1
|
Chen HN, Yang L, Huang J, Song WL, Chen HS. Theory of electrotuneable mechanical force of solid-liquid interfaces: A self-consistent treatment of short-range van der Waals forces and long-range electrostatic forces. J Chem Phys 2024; 161:084110. [PMID: 39185848 DOI: 10.1063/5.0220779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
Elucidating the mechanical forces between two solid surfaces immersed in a communal liquid environment is crucial for understanding and controlling adhesion, friction, and electrochemistry in many technologies. Although traditional models can adequately describe long-range mechanical forces, they require substantial modifications in the nanometric region where electronic effects become important. A hybrid quantum-classical model is employed herein to investigate the separation-dependent disjoining pressure between two metal surfaces immersed in an electrolyte solution under potential control. We find that the pressure between surfaces transits from a long-range electrostatic interaction, attractive or repulsive depending on the charging conditions of surfaces, to a strong short-range van der Waals attraction and then an even strong Pauli repulsion due to the redistribution of electrons. The underlying mechanism of the transition, especially the attractive-repulsive one in the short-range region, is elucidated. This work contributes to the understanding of electrotunable friction and lubrication in a liquid environment.
Collapse
Affiliation(s)
- Hai-Na Chen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Le Yang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Jun Huang
- Institute of Energy and Climate Research, IEK-13: Theory and Computation of Energy Materials, Forschungszentrum Julich GmbH, 52425 Julich, Germany
| | - Wei-Li Song
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Hao-Sen Chen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Limaye A, Suvlu D, Willard AP. Water molecules mute the dependence of the double-layer potential profile on ionic strength. Faraday Discuss 2024; 249:267-288. [PMID: 37830233 DOI: 10.1039/d3fd00114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
We present the results of molecular dynamics simulations of a nanoscale electrochemical cell. The simulations include an aqueous electrolyte solution with varying ionic strength (i.e., concentrations ranging from 0-4 M) between a pair of metallic electrodes held at constant potential difference. We analyze these simulations by computing the electrostatic potential profile of the electric double-layer region and find it to be nearly independent of ionic concentration, in stark contrast to the predictions of standard continuum-based theories. We attribute this lack of concentration dependence to the molecular influences of water molecules at the electrode-solution interface. These influences include the molecular manifestation of water's dielectric response, which tends to drown out the comparatively weak screening requirement of the ions. To support our analysis, we decompose water's interfacial response into three primary contributions: molecular layering, intrinsic (zero-field) orientational polarization, and the dipolar dielectric response.
Collapse
Affiliation(s)
- Aditya Limaye
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | - Dylan Suvlu
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | - Adam P Willard
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
3
|
Tran B, Zhou Y, Janik MJ, Milner ST. Negative Dielectric Constant of Water at a Metal Interface. PHYSICAL REVIEW LETTERS 2023; 131:248001. [PMID: 38181128 DOI: 10.1103/physrevlett.131.248001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/09/2023] [Indexed: 01/07/2024]
Abstract
Water polarizability at a metal interface plays an essential role in electrochemistry. We devise a classical molecular dynamics approach with an efficient description of metal polarization and a novel ac field method to measure the local dielectric response of interfacial water. Water adlayers next to the metal surface exhibit higher-than-bulk in-plane and negative out-of-plane dielectric constants, the latter corresponding physically to overscreening of the applied field. If we account for the gap region at the interface, the average out-of-plane dielectric constant is quite low (ε_{⊥}≈2), in agreement with reported measurements on confined thin films.
Collapse
Affiliation(s)
- Bolton Tran
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuxing Zhou
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael J Janik
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Scott T Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Gasparotto P, Fitzner M, Cox SJ, Sosso GC, Michaelides A. How do interfaces alter the dynamics of supercooled water? NANOSCALE 2022; 14:4254-4262. [PMID: 35244128 DOI: 10.1039/d2nr00387b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The structure of liquid water in the proximity of an interface can deviate significantly from that of bulk water, with surface-induced structural perturbations typically converging to bulk values at about ∼1 nm from the interface. While these structural changes are well established it is, in contrast, less clear how an interface perturbs the dynamics of water molecules within the liquid. Here, through an extensive set of molecular dynamics simulations of supercooled bulk and interfacial water films and nano-droplets, we observe the formation of persistent, spatially extended dynamical domains in which the average mobility varies as a function of the distance from the interface. This is in stark contrast with the dynamical heterogeneity observed in bulk water, where these domains average out spatially over time. We also find that the dynamical response of water to an interface depends critically on the nature of the interface and on the choice of interface definition. Overall these results reveal a richness in the dynamics of interfacial water that opens up the prospect of tuning the dynamical response of water through specific modifications of the interface structure or confining material.
Collapse
Affiliation(s)
- Piero Gasparotto
- Scientific Computing Division, Paul Scherrer Institute, Villigen 5232, Switzerland.
| | - Martin Fitzner
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Stephen James Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Gabriele Cesare Sosso
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
5
|
Abstract
Many key industrial processes, from electricity production, conversion, and storage to electrocatalysis or electrochemistry in general, rely on physical mechanisms occurring at the interface between a metallic electrode and an electrolyte solution, summarized by the concept of an electric double layer, with the accumulation/depletion of electrons on the metal side and of ions on the liquid side. While electrostatic interactions play an essential role in the structure, thermodynamics, dynamics, and reactivity of electrode-electrolyte interfaces, these properties also crucially depend on the nature of the ions and solvent, as well as that of the metal itself. Such interfaces pose many challenges for modeling because they are a place where quantum chemistry meets statistical physics. In the present review, we explore the recent advances in the description and understanding of electrode-electrolyte interfaces with classical molecular simulations, with a focus on planar interfaces and solvent-based liquids, from pure solvent to water-in-salt electrolytes.
Collapse
Affiliation(s)
- Laura Scalfi
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
| | - Mathieu Salanne
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| | - Benjamin Rotenberg
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
6
|
Rotenberg B. Use the force! Reduced variance estimators for densities, radial distribution functions, and local mobilities in molecular simulations. J Chem Phys 2020; 153:150902. [DOI: 10.1063/5.0029113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-Chimie des électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| |
Collapse
|
7
|
Bao YF, Cao MF, Wu SS, Huang TX, Zeng ZC, Li MH, Wang X, Ren B. Atomic Force Microscopy Based Top-Illumination Electrochemical Tip-Enhanced Raman Spectroscopy. Anal Chem 2020; 92:12548-12555. [PMID: 32804479 DOI: 10.1021/acs.analchem.0c02466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemical tip-enhanced Raman spectroscopy (EC-TERS) is a powerful technique for the in situ study of the physiochemical properties of the electrochemical solid/liquid interface at the nanoscale and molecular level. To further broaden the potential window of EC-TERS while extending its application to opaque samples, here, we develop a top-illumination atomic force microscopy (AFM) based EC-TERStechnique by using a water-immersion objective of a high numerical aperture to introduce the excitation laser and collect the signal. This technique not only extends the application of EC-TERS but also has a high detection sensitivity and experimental efficiency. We coat a SiO2 protection layer over the AFM-TERS tip to improve both the mechanical and chemical stability of the tip in a liquid TERS experiment. We investigate the influence of liquid on the tip-sample distance to obtain the highest TERS enhancement. We further evaluate the reliability of the as-developed EC-AFM-TERS technique by studying the electrochemical redox reaction of polyaniline. The top-illumination EC-AFM-TERS is promising for broadening the application of EC-TERS to more practical systems, including energy storage and (photo)electrocatalysis.
Collapse
Affiliation(s)
- Yi-Fan Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mao-Feng Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Si-Si Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Teng-Xiang Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi-Cong Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mao-Hua Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Coretti A, Scalfi L, Bacon C, Rotenberg B, Vuilleumier R, Ciccotti G, Salanne M, Bonella S. Mass-zero constrained molecular dynamics for electrode charges in simulations of electrochemical systems. J Chem Phys 2020; 152:194701. [PMID: 33687245 DOI: 10.1063/5.0007192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Classical molecular dynamics simulations have recently become a standard tool for the study of electrochemical systems. State-of-the-art approaches represent the electrodes as perfect conductors, modeling their responses to the charge distribution of electrolytes via the so-called fluctuating charge model. These fluctuating charges are additional degrees of freedom that, in a Born-Oppenheimer spirit, adapt instantaneously to changes in the environment to keep each electrode at a constant potential. Here, we show that this model can be treated in the framework of constrained molecular dynamics, leading to a symplectic and time-reversible algorithm for the evolution of all the degrees of freedom of the system. The computational cost and the accuracy of the new method are similar to current alternative implementations of the model. The advantage lies in the accuracy and long term stability guaranteed by the formal properties of the algorithm and in the possibility to systematically introduce additional kinematic conditions of arbitrary number and form. We illustrate the performance of the constrained dynamics approach by enforcing the electroneutrality of the electrodes in a simple capacitor consisting of two graphite electrodes separated by a slab of liquid water.
Collapse
Affiliation(s)
- A Coretti
- Department of Mathematical Sciences, Politecnico di Torino, I-10129 Torino, Italy
| | - L Scalfi
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | - C Bacon
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | - B Rotenberg
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | - R Vuilleumier
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - G Ciccotti
- Institute for Applied Computing "Mauro Picone" (IAC), CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - M Salanne
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | - S Bonella
- Centre Européen de Calcul Atomique et Moléculaire (CECAM), Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Zhang Y, Stirnemann G, Hynes JT, Laage D. Water dynamics at electrified graphene interfaces: a jump model perspective. Phys Chem Chem Phys 2020; 22:10581-10591. [PMID: 32149294 DOI: 10.1039/d0cp00359j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reorientation dynamics of water at electrified graphene interfaces was recently shown [J. Phys. Chem. Lett., 2020, 11, 624-631] to exhibit a surprising and strongly asymmetric behavior: positive electrode potentials slow down interfacial water reorientation, while for increasingly negative potentials water dynamics first accelerates before reaching an extremum and then being retarded for larger potentials. Here we use classical molecular dynamics simulations to determine the molecular mechanisms governing water dynamics at electrified interfaces. We show that changes in water reorientation dynamics with electrode potential arise from the electrified interfaces' impacts on water hydrogen-bond jump exchanges, and can be quantitatively described by the extended jump model. Finally, our simulations indicate that no significant dynamical heterogeneity occurs within the water interfacial layer next to the weakly interacting graphene electrode.
Collapse
Affiliation(s)
- Yiwei Zhang
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | | | | | | |
Collapse
|
10
|
Schile AJ, Limmer DT. Rate constants in spatially inhomogeneous systems. J Chem Phys 2019; 150:191102. [DOI: 10.1063/1.5092837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Addison J. Schile
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
- Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720-1460, USA
| | - David T. Limmer
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
- Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720-1460, USA
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720-1460, USA
| |
Collapse
|
11
|
Remsing RC, Klein ML. Exponential Scaling of Water Exchange Rates with Ion Interaction Strength from the Perspective of Dynamic Facilitation Theory. J Phys Chem A 2019; 123:1077-1084. [PMID: 30609371 DOI: 10.1021/acs.jpca.8b09667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Richard C. Remsing
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael L. Klein
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
12
|
|
13
|
The structure of metal-water interface at the potential of zero charge from density functional theory-based molecular dynamics. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Shin S, Willard AP. Characterizing Hydration Properties Based on the Orientational Structure of Interfacial Water Molecules. J Chem Theory Comput 2018; 14:461-465. [PMID: 29266930 DOI: 10.1021/acs.jctc.7b00898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we present a general computational method for characterizing the molecular structure of liquid water interfaces as sampled from atomistic simulations. With this method, the interfacial structure is quantified based on the statistical analysis of the orientational configurations of interfacial water molecules. The method can be applied to generate position dependent maps of the hydration properties of heterogeneous surfaces. We present an application to the characterization of surface hydrophobicity, which we use to analyze simulations of a hydrated protein. We demonstrate that this approach is capable of revealing microscopic details of the collective dynamics of a protein hydration shell.
Collapse
Affiliation(s)
- Sucheol Shin
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Kim J, Munro A, Beauchemin D, Jerkiewicz G. Limits of Detection and Quantification of Electrochemical Quartz-Crystal Nanobalance in Platinum Electrochemistry and Electrocatalysis Research. Anal Chem 2016; 88:10599-10604. [PMID: 27690394 DOI: 10.1021/acs.analchem.6b02804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electrochemical quartz-crystal nanobalance has been used in electrochemistry research for over three decades. It provides an atomic/molecular level insight into the nature of interfacial electrochemical phenomena by measuring in situ mass changes on the nanogram scale. The sensitivity of this technique remains unknown because there have been no attempts to determine its limits of detection (LOD) or quantification (LOQ). We propose an experimental approach for determining the values of LOD and LOQ for Pt electrodes in aqueous H2SO4 solutions that employs cyclic voltammetry and frequency variation measurements. However, this methodology is also appropriate to other electrode materials and electrolytes. The LOD and LOQ values depend on the electrolyte concentration and decrease (i.e., the sensitivity increases) as the concentration decreases. Knowledge of the LOD and LOQ values determines the applicability of this technique in research on the oxidation and degradation of Pt catalysts employed in fuel cells.
Collapse
Affiliation(s)
- Jutae Kim
- Department of Chemistry, Queen's University , 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Andrew Munro
- Department of Chemistry, Queen's University , 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Diane Beauchemin
- Department of Chemistry, Queen's University , 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Gregory Jerkiewicz
- Department of Chemistry, Queen's University , 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
16
|
Choudhuri JR, Vanzo D, Madden PA, Salanne M, Bratko D, Luzar A. Dynamic Response in Nanoelectrowetting on a Dielectric. ACS NANO 2016; 10:8536-8544. [PMID: 27556934 DOI: 10.1021/acsnano.6b03753] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Droplet spreading at an applied voltage underlies the function of tunable optical devices including adjustable lenses and matrix display elements. Faster response and the enhanced resolution motivate research toward miniaturization of these devices to nanoscale dimensions. The response of an aqueous nanodroplet to an applied field can differ significantly from macroscopic predictions. Understanding these differences requires characterization at the molecular level. We describe the equilibrium and nonequilibrium molecular dynamics simulations of nanosized aqueous droplets on a hydrophobic surface with the embedded concentric electrodes. Constant electrode potential is enforced by a rigorous account of the metal polarization. We demonstrate that the reduction of the equilibrium contact angle is commensurate to, and adjusts reversibly with, the voltage change. For a droplet with O(10) nm diameter, a typical response time to the imposition of the field is of O(10(2)) ps. Drop relaxation is about twice as fast when the field is switched off. The friction coefficient obtained from the rate of the drop relaxation on the nonuniform surface, decreases when the droplet approaches equilibrium from either direction, that is, by spreading or receding. The strong dependence of the friction on the surface hydrophilicity points to the dominance of the liquid-surface friction at the drop's perimeter as described in the molecular kinetic theory. This approach enables correct predictions of trends in dynamic responses associated with varied voltage or substrate material.
Collapse
Affiliation(s)
- Jyoti Roy Choudhuri
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284, United States
| | - Davide Vanzo
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284, United States
| | - Paul Anthony Madden
- Department of Material Science, Oxford University , Park Road, Oxford OX1 3PH, United Kingdom
| | - Mathieu Salanne
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 8234 PHENIX , 75005 Paris, France
- Maison de la Simulation, CEA, CNRS, Université Paris-Sud, UVSQ, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
| | - Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284, United States
| | - Alenka Luzar
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284, United States
| |
Collapse
|
17
|
Björneholm O, Hansen MH, Hodgson A, Liu LM, Limmer DT, Michaelides A, Pedevilla P, Rossmeisl J, Shen H, Tocci G, Tyrode E, Walz MM, Werner J, Bluhm H. Water at Interfaces. Chem Rev 2016; 116:7698-726. [PMID: 27232062 DOI: 10.1021/acs.chemrev.6b00045] [Citation(s) in RCA: 414] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.
Collapse
Affiliation(s)
- Olle Björneholm
- Department of Physics and Astronomy, Uppsala University , Box 516, 751 20 Uppsala, Sweden
| | - Martin H Hansen
- Technical University of Denmark , 2800 Kongens Lyngby, Denmark.,Department of Chemistry, University of Copenhagen , Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Andrew Hodgson
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom
| | - Li-Min Liu
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom.,Beijing Computational Science Research Center , Beijing, 100193, China
| | - David T Limmer
- Princeton Center for Theoretical Science, Princeton University , Princeton, New Jersey 08544, United States
| | - Angelos Michaelides
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom
| | - Philipp Pedevilla
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen , Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Huaze Shen
- International Center for Quantum Materials and School of Physics, Peking University , Beijing 100871, China
| | - Gabriele Tocci
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom.,Laboratory for fundamental BioPhotonics, Laboratory of Computational Science and Modeling, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Eric Tyrode
- Department of Chemistry, KTH Royal Institute of Technology , 10044 Stockholm, Sweden
| | - Marie-Madeleine Walz
- Department of Physics and Astronomy, Uppsala University , Box 516, 751 20 Uppsala, Sweden
| | - Josephina Werner
- Department of Physics and Astronomy, Uppsala University , Box 516, 751 20 Uppsala, Sweden.,Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences , Box 7015, 750 07 Uppsala, Sweden
| | - Hendrik Bluhm
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|