1
|
Liang K, Bi L, Zhu Q, Zhou H, Li S. Ultrafast Dynamics Revealed with Time-Resolved Scanning Tunneling Microscopy: A Review. ACS APPLIED OPTICAL MATERIALS 2023; 1:924-938. [PMID: 37260467 PMCID: PMC10227725 DOI: 10.1021/acsaom.2c00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 06/02/2023]
Abstract
A scanning tunneling microscope (STM) capable of performing pump-probe spectroscopy integrates unmatched atomic-scale resolution with high temporal resolution. In recent years, the union of electronic, terahertz, or visible/near-infrared pulses with STM has contributed to our understanding of the atomic-scale processes that happen between milliseconds and attoseconds. This time-resolved STM (TR-STM) technique is evolving into an unparalleled approach for exploring the ultrafast nuclear, electronic, or spin dynamics of molecules, low-dimensional structures, and material surfaces. Here, we review the recent advancements in TR-STM; survey its application in measuring the dynamics of three distinct systems, nucleus, electron, and spin; and report the studies on these transient processes in a series of materials. Besides the discussion on state-of-the-art techniques, we also highlight several emerging research topics about the ultrafast processes in nanoscale objects where we anticipate that the TR-STM can help broaden our knowledge.
Collapse
Affiliation(s)
- Kangkai Liang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Qingyi Zhu
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
| | - Hao Zhou
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| |
Collapse
|
2
|
Wu Z, Xiong W. Neumann's principle based eigenvector approach for deriving non-vanishing tensor elements for nonlinear optics. J Chem Phys 2022; 157:134702. [PMID: 36209027 PMCID: PMC9531997 DOI: 10.1063/5.0118711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 11/14/2022] Open
Abstract
Physical properties are commonly represented by tensors, such as optical susceptibilities. The conventional approach of deriving non-vanishing tensor elements of symmetric systems relies on the intuitive consideration of positive/negative sign flipping after symmetry operations, which could be tedious and prone to miscalculation. Here, we present a matrix-based approach that gives a physical picture centered on Neumann's principle. The principle states that symmetries in geometric systems are adopted by their physical properties. We mathematically apply the principle to the tensor expressions and show a procedure with clear physical intuition to derive non-vanishing tensor elements based on eigensystems. The validity of the approach is demonstrated by examples of commonly known second and third-order nonlinear susceptibilities of chiral/achiral surfaces, together with complicated scenarios involving symmetries such as D6 and Oh symmetries. We then further applied this method to higher-rank tensors that are useful for 2D and high-order spectroscopy. We also extended our approach to derive nonlinear tensor elements with magnetization, which is critical for measuring spin polarization on surfaces for quantum information technologies. A Mathematica code based on this generalized approach is included that can be applied to any symmetry and higher order nonlinear processes.
Collapse
Affiliation(s)
- Zishan Wu
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California 92093, USA
| | - Wei Xiong
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
3
|
Wang H, Xiong W. Revealing the Molecular Physics of Lattice Self-Assembly by Vibrational Hyperspectral Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3017-3031. [PMID: 35238562 DOI: 10.1021/acs.langmuir.1c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lattice self-assemblies (LSAs), which mimic protein assemblies, were studied using a new nonlinear vibrational imaging technique called vibrational sum-frequency generation (VSFG) microscopy. This technique successfully mapped out the mesoscopic morphology, microscopic geometry, symmetry, and ultrafast dynamics of an LSA formed by β-cyclodextrin (β-CD) and sodium dodecyl sulfate (SDS). The spatial imaging also revealed correlations between these different physical properties. Such knowledge shed light on the functions and mechanical properties of LSAs. In this Feature Article, we briefly introduce the fundamental principles of the VSFG microscope and then discuss the in-depth molecular physics of the LSAs revealed by this imaging technique. The application of the VSFG microscope to the artificial LSAs also paved the way for an alternative approach to studying the structure-dynamic-function relationships of protein assemblies, which were essential for life and difficult to study because of their various and complicated interactions. We expect that the hyperspectral VSFG microscope could be broadly applied to many noncentrosymmetric soft materials.
Collapse
|
4
|
Wells TA, Kwizera MH, Chen SM, Jemal N, Brown MD, Chen PC. Two-dimensional pattern recognition methods for rapidly recording and interpreting high resolution coherent three-dimensional spectra. J Chem Phys 2021; 154:194201. [PMID: 34240898 DOI: 10.1063/5.0047926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High resolution coherent multidimensional spectroscopy has the ability to reduce congestion and automatically sort peaks by species and quantum numbers, even for simple mixtures and molecules that are extensively perturbed. The two-dimensional version is relatively simple to carry out, and the results are easy to interpret, but its ability to deal with severe spectral congestion is limited. Three-dimensional spectroscopy is considerably more complicated and time-consuming than two-dimensional spectroscopy, but it provides the spectral resolution needed for more challenging systems. This paper describes how to design high resolution coherent 3D spectroscopy experiments so that a small number of strategically positioned 2D scans may be used instead of recording all the data required for a 3D plot. This faster and simpler approach uses new pattern recognition methods to interpret the results. Key factors that affect the resulting patterns include the scanning strategy and the four wave mixing process. Optimum four wave mixing (FWM) processes and scanning strategies have been identified, and methods for identifying the FWM process from the observed patterns have been developed. Experiments based on nonparametric FWM processes provide significant pattern recognition and efficiency advantages over those based on parametric processes. Alternative scanning strategies that use synchronous scanning and asynchronous scanning to create new kinds of patterns have also been identified. Rotating the resulting patterns in 3D space leads to an insight into similarities in the patterns produced by different FWM processes.
Collapse
Affiliation(s)
- Thresa A Wells
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Muhire H Kwizera
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Sarah M Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, USA
| | - Nihal Jemal
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Morgan D Brown
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Peter C Chen
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| |
Collapse
|
5
|
Wang H, Xiong W. Vibrational Sum-Frequency Generation Hyperspectral Microscopy for Molecular Self-Assembled Systems. Annu Rev Phys Chem 2021; 72:279-306. [PMID: 33441031 DOI: 10.1146/annurev-physchem-090519-050510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this review, we discuss the recent developments and applications of vibrational sum-frequency generation (VSFG) microscopy. This hyperspectral imaging technique can resolve systems without inversion symmetry, such as surfaces, interfaces and noncentrosymmetric self-assembled materials, in the spatial, temporal, and spectral domains. We discuss two common VSFG microscopy geometries: wide-field and confocal point-scanning. We then introduce the principle of VSFG and the relationships between hyperspectral imaging with traditional spectroscopy, microscopy, and time-resolved measurements. We further highlight crucial applications of VSFG microscopy in self-assembled monolayers, cellulose in plants, collagen fibers, and lattice self-assembled biomimetic materials. In these systems, VSFG microscopy reveals relationships between physical properties that would otherwise be hidden without being spectrally, spatially, and temporally resolved. Lastly, we discuss the recent development of ultrafast transient VSFG microscopy, which can spatially measure the ultrafast vibrational dynamics of self-assembled materials. The review ends with an outlook on the technical challenges of and scientific potential for VSFG microscopy.
Collapse
Affiliation(s)
- Haoyuan Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA; ,
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA; , .,Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
6
|
Li Y, Shrestha M, Luo M, Sit I, Song M, Grassian VH, Xiong W. Salting Up of Proteins at the Air/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13815-13820. [PMID: 31584824 DOI: 10.1021/acs.langmuir.9b01901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vibrational sum frequency generation (VSFG) spectroscopy and surface pressure measurements are used to investigate the adsorption of a globular protein, bovine serum albumin (BSA), at the air/water interface with and without the presence of salts. We find at low (2 to 5 ppm) protein concentrations, which is relevant to environmental conditions, both VSFG and surface pressure measurements of BSA behave drastically different from at higher concentrations. Instead of emerging to the surface immediately, as observed at 1000 ppm, protein adsorption kinetics is on the order of tens of minutes at lower concentrations. Most importantly, salts strongly enhance the presence of BSA at the interface. This "salting up" effect differs from the well-known "salting out" effect as it occurs at protein concentrations well-below where "salting out" occurs. The dependence on salt concentration suggests this effect relates to a large extent electrostatic interactions and volume exclusion. Additionally, results from other proteins and the pH dependence of the kinetics indicate that salting up depends on the flexibility of proteins. This initial report demonstrates "salting up" as a new type of salt-driven interfacial phenomenon, which is worthy of continued investigation given the importance of salts in biological and environmental aqueous systems.
Collapse
|
7
|
Ge A, Rudshteyn B, Videla PE, Miller CJ, Kubiak CP, Batista VS, Lian T. Heterogenized Molecular Catalysts: Vibrational Sum-Frequency Spectroscopic, Electrochemical, and Theoretical Investigations. Acc Chem Res 2019; 52:1289-1300. [PMID: 31056907 DOI: 10.1021/acs.accounts.9b00001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rhenium and manganese bipyridyl tricarbonyl complexes have attracted intense interest for their promising applications in photocatalytic and electrocatalytic CO2 reduction in both homogeneous and heterogenized systems. To date, there have been extensive studies on immobilizing Re catalysts on solid surfaces for higher catalytic efficiency, reduced catalyst loading, and convenient product separation. However, in order for the heterogenized molecular catalysts to achieve the combination of the best aspects of homogeneous and heterogeneous catalysts, it is essential to understand the fundamental physicochemical properties of such heterogeneous systems, such as surface-bound structures of Re/Mn catalysts, substrate-adsorbate interactions, and photoinduced or electric-field-induced effects on Re/Mn catalysts. For example, the surface may act to (un)block substrates, (un)trap charges, (de)stabilize particular intermediates (and thus affect scaling relations), and shift potentials in different directions, just as protein environments do. The close collaboration between the Lian, Batista, and Kubiak groups has resulted in an integrated approach to investigate how the semiconductor or metal surface affects the properties of the attached catalyst. Synthetic strategies to achieve stable and controlled attachment of Re/Mn molecular catalysts have been developed. Steady-state, time-resolved, and electrochemical vibrational sum-frequency generation (SFG) spectroscopic studies have provided insight into the effects of interfacial structures, ultrafast vibrational energy relaxation, and electric field on the Re/Mn catalysts, respectively. Various computational methods utilizing density functional theory (DFT) have been developed and applied to determine the molecular orientation by direct comparison to spectroscopy, unravel vibrational energy relaxation mechanisms, and quantify the interfacial electric field strength of the Re/Mn catalyst systems. This Account starts with a discussion of the recent progress in determining the surface-bound structures of Re catalysts on semiconductor and Au surfaces by a combined vibrational SFG and DFT study. The effects of crystal facet, length of anchoring ligands, and doping of the semiconductor on the bound structures of Re catalysts and of the substrate itself are discussed. This is followed by a summary of the progress in understanding the vibrational relaxation (VR) dynamics of Re catalysts covalently adsorbed on semiconductor and metal surfaces. The VR processes of Re catalysts on TiO2 films and TiO2 single crystals and a Re catalyst tethered on Au, particularly the role of electron-hole pair (EHP)-induced coupling on the VR of the Re catalyst bound on Au, are discussed. The Account also summarizes recent studies in quantifying the electric field strength experienced by the catalytically active site of the Re/Mn catalyst bound on a Au electrode based on a combined electrochemical SFG and DFT study of the Stark tuning of the CO stretching modes of these catalysts. Finally, future research directions on surface-immobilized molecular catalyst systems are discussed.
Collapse
Affiliation(s)
- Aimin Ge
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Benjamin Rudshteyn
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Pablo E. Videla
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Christopher J. Miller
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Clifford P. Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Victor S. Batista
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
8
|
Li Y, Xiang B, Xiong W. Heterodyne transient vibrational SFG to reveal molecular responses to interfacial charge transfer. J Chem Phys 2019; 150:114706. [DOI: 10.1063/1.5066237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Yingmin Li
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, USA
| | - Bo Xiang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, USA
| | - Wei Xiong
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
9
|
Clark ML, Ge A, Videla PE, Rudshteyn B, Miller CJ, Song J, Batista VS, Lian T, Kubiak CP. CO2 Reduction Catalysts on Gold Electrode Surfaces Influenced by Large Electric Fields. J Am Chem Soc 2018; 140:17643-17655. [DOI: 10.1021/jacs.8b09852] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Melissa L. Clark
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Aimin Ge
- Department of Chemistry, Emory University, 1515 Dickey Drive, Northeast, Atlanta, Georgia 30322, United States
| | - Pablo E. Videla
- Department of Chemistry and Energy Sciences Institute, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Benjamin Rudshteyn
- Department of Chemistry and Energy Sciences Institute, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Christopher J. Miller
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Jia Song
- Department of Chemistry, Emory University, 1515 Dickey Drive, Northeast, Atlanta, Georgia 30322, United States
| | - Victor S. Batista
- Department of Chemistry and Energy Sciences Institute, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive, Northeast, Atlanta, Georgia 30322, United States
| | - Clifford P. Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Kiefer LM, Kubarych KJ. Two-dimensional infrared spectroscopy of coordination complexes: From solvent dynamics to photocatalysis. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Cohn B, Engelman B, Goldner A, Chuntonov L. Two-Dimensional Infrared Spectroscopy with Local Plasmonic Fields of a Trimer Gap-Antenna Array. J Phys Chem Lett 2018; 9:4596-4601. [PMID: 30044640 DOI: 10.1021/acs.jpclett.8b01937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Half-wavelength plasmonic antennas tuned to resonance with molecular vibrational excitations have been demonstrated to enhance 2DIR signals by multiple orders of magnitude. We design doubly degenerate in-plane plasmonic normal modes of the symmetric trimer gap-antenna, which have orthogonal dipole moments excited by light of the appropriate polarization, to localize the enhanced field into the antenna's gap. Vibrational excitations serve as sensitive probes of the plasmonic fields. 2DIR spectroscopy of thin molecular films indicates that molecules emitting enhanced signals experience an electric field with a direction independent of the excitation laser pulse polarization. Our results illustrate the trade-off between the large signal amplification in molecules close to the antenna surface by resonant plasmons, where the direction of the enhanced fields follows metal surface boundary conditions, and the associated limitations for the polarization-selective spectroscopy. The ultrafast quantum dynamics reported by the enhanced signals is not affected by its interaction with plasmonic excitation.
Collapse
|
12
|
Cohn B, Prasad AK, Chuntonov L. Communication: Probing the interaction of infrared antenna arrays and molecular films with ultrafast quantum dynamics. J Chem Phys 2018; 148:131101. [DOI: 10.1063/1.5025600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Bar Cohn
- Schulich Faculty of Chemistry, Solid State Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Amit K. Prasad
- Schulich Faculty of Chemistry, Solid State Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry, Solid State Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
13
|
Ho JJ, Ghosh A, Zhang TO, Zanni MT. Heterogeneous Amyloid β-Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy. J Phys Chem A 2018; 122:1270-1282. [DOI: 10.1021/acs.jpca.7b11934] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jia-Jung Ho
- University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Ayanjeet Ghosh
- University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Tianqi O. Zhang
- University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
14
|
Kraack JP, Sévery L, Tilley SD, Hamm P. Plasmonic Substrates Do Not Promote Vibrational Energy Transfer at Solid-Liquid Interfaces. J Phys Chem Lett 2018; 9:49-56. [PMID: 29235870 DOI: 10.1021/acs.jpclett.7b02855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intermolecular vibrational energy transfer in monolayers of isotopically mixed rhenium carbonyl complexes at solid-liquid interfaces is investigated with the help of ultrafast 2D Attenuated Total Reflectance Infrared (2D ATR IR) spectroscopy in dependence of plasmonic surface enhancement effects. Dielectric and plasmonic materials are used to demonstrate that plasmonic effects have no impact on the vibrational energy transfer rate in a regime of moderate IR surface enhancement (enhancement factors up to ca. 30). This result can be explained with the common image-dipole picture. The vibrational energy transfer rate thus can be used as a direct observable to determine intermolecular distances on surfaces, regardless of their plasmonic properties.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Laurent Sévery
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - S David Tilley
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
15
|
Kraack JP. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Top Curr Chem (Cham) 2017; 375:86. [PMID: 29071445 DOI: 10.1007/s41061-017-0172-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
Abstract
Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
16
|
Kraack JP, Frei A, Alberto R, Hamm P. Ultrafast Vibrational Energy Transfer in Catalytic Monolayers at Solid-Liquid Interfaces. J Phys Chem Lett 2017; 8:2489-2495. [PMID: 28521090 DOI: 10.1021/acs.jpclett.7b01034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigate the ultrafast vibrational dynamics of monolayers from adsorbed rhenium-carbonyl CO2-reduction catalysts on a semiconductor surface (indium-tin-oxide (ITO)) with ultrafast two-dimensional attenuated total reflection infrared (2D ATR IR) spectroscopy. The complexes are partially equipped with isotope-labeled (13C) carbonyl ligands to generate two spectroscopically distinguishable forms of the molecules. Ultrafast vibrational energy transfer between the molecules is observed via the temporal evolution of cross-peaks between their symmetric carbonyl stretching vibrations. These contributions appear with time constant of 70 and 90 ps for downhill and uphill energy transfer, respectively. The energy transfer is thus markedly slower than any of the other intramolecular dynamics. From the transfer rate, an intermolecular distance of ∼4-5 Å can be estimated, close to the van der Waals distance of the molecular head groups. The present paper presents an important cornerstone for a better understanding of intermolecular coupling mechanisms of molecules on surfaces and explains the absence of similar features in earlier studies.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Angelo Frei
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Roger Alberto
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
17
|
Chen PC. An Introduction to Coherent Multidimensional Spectroscopy. APPLIED SPECTROSCOPY 2016; 70:1937-1951. [PMID: 27940533 DOI: 10.1177/0003702816669730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Coherent multidimensional spectroscopy is a field that has drawn much attention as an optical analogue to multidimensional nuclear magnetic resonance imaging. Coherent multidimensional spectroscopic techniques produce spectra that show the magnitude of an optical signal as a function of two or more pulsed laser frequencies. Spectra can be collected in either the frequency or the time domain. In addition to improving resolution and overcoming spectral congestion, coherent multidimensional spectroscopy provides the ability to investigate and conduct studies based upon the relationship between different peaks. The purpose of this paper is to provide a general introduction to the area of coherent multidimensional spectroscopy, to provide a brief overview of current experimental approaches, and to discuss some emerging developments in this relatively young field.
Collapse
|
18
|
Kraack JP, Hamm P. Surface-Sensitive and Surface-Specific Ultrafast Two-Dimensional Vibrational Spectroscopy. Chem Rev 2016; 117:10623-10664. [DOI: 10.1021/acs.chemrev.6b00437] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|