1
|
Kim J, Lee T, Jung HD, Kim M, Eo J, Kang B, Jung H, Park J, Bae D, Lee Y, Park S, Kim W, Back S, Lee Y, Nam DH. Vitamin C-induced CO 2 capture enables high-rate ethylene production in CO 2 electroreduction. Nat Commun 2024; 15:192. [PMID: 38167422 PMCID: PMC10762245 DOI: 10.1038/s41467-023-44586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
High-rate production of multicarbon chemicals via the electrochemical CO2 reduction can be achieved by efficient CO2 mass transport. A key challenge for C-C coupling in high-current-density CO2 reduction is how to promote *CO formation and dimerization. Here, we report molecularly enhanced CO2-to-*CO conversion and *CO dimerization for high-rate ethylene production. Nanoconfinement of ascorbic acid by graphene quantum dots enables immobilization and redox reversibility of ascorbic acid in heterogeneous electrocatalysts. Cu nanowire with ascorbic acid nanoconfined by graphene quantum dots (cAA-CuNW) demonstrates high-rate ethylene production with a Faradaic efficiency of 60.7% and a partial current density of 539 mA/cm2, a 2.9-fold improvement over that of pristine CuNW. Furthermore, under low CO2 ratio of 33%, cAA-CuNW still exhibits efficient ethylene production with a Faradaic efficiency of 41.8%. We find that cAA-CuNW increases *CO coverage and optimizes the *CO binding mode ensemble between atop and bridge for efficient C-C coupling. A mechanistic study reveals that ascorbic acid can facilitate *CO formation and dimerization by favorable electron and proton transfer with strong hydrogen bonding.
Collapse
Affiliation(s)
- Jongyoun Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Taemin Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Hyun Dong Jung
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Minkyoung Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jungsu Eo
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Byeongjae Kang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Hyeonwoo Jung
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jaehyoung Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Daewon Bae
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Yujin Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sojung Park
- Department of Energy Engineering, Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Jeollanam-do, Republic of Korea
| | - Wooyul Kim
- Department of Energy Engineering, Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Jeollanam-do, Republic of Korea
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea.
| | - Youngu Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Dae-Hyun Nam
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
2
|
Figueroa-Cosme L, Gilroy KD, Yang TH, Vara M, Park J, Bao S, da Silva AGM, Xia Y. Synthesis of Palladium Nanoscale Octahedra through a One-Pot, Dual-Reductant Route and Kinetic Analysis. Chemistry 2018; 24:6133-6139. [DOI: 10.1002/chem.201705720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Legna Figueroa-Cosme
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta Georgia 30332 USA
| | - Kyle D. Gilroy
- The Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology and Emory University; Atlanta Georgia 30332 USA
| | - Tung-Han Yang
- The Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology and Emory University; Atlanta Georgia 30332 USA
| | - Madeline Vara
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta Georgia 30332 USA
| | - Jinho Park
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta Georgia 30332 USA
| | - Shixiong Bao
- The Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology and Emory University; Atlanta Georgia 30332 USA
| | - Anderson G. M. da Silva
- The Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology and Emory University; Atlanta Georgia 30332 USA
| | - Younan Xia
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta Georgia 30332 USA
- The Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology and Emory University; Atlanta Georgia 30332 USA
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia 30332 USA
| |
Collapse
|
3
|
Zhu S, Hu X, Shao M. Impacts of anions on the oxygen reduction reaction kinetics on platinum and palladium surfaces in alkaline solutions. Phys Chem Chem Phys 2017; 19:7631-7641. [DOI: 10.1039/c7cp00404d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
(Bi)sulfate and (bi)carbonate have distinct impacts on ORR, and citrate was self-dissociated on Pt and Pd.
Collapse
Affiliation(s)
- Shangqian Zhu
- Department of Chemical and Biomolecular Engineering
- The Hong Kong University of Science & Technology
- Kowloon
- China
| | - Xiaomeng Hu
- Department of Chemical and Biomolecular Engineering
- The Hong Kong University of Science & Technology
- Kowloon
- China
| | - Minhua Shao
- Department of Chemical and Biomolecular Engineering
- The Hong Kong University of Science & Technology
- Kowloon
- China
| |
Collapse
|
4
|
Martínez-Rodríguez RA, Vidal-Iglesias FJ, Solla- Gullón J, Cabrera CR, Feliu JM. Electrochemical Characterisation of Platinum Nanoparticles Prepared in a Water-in-Oil Microemulsion in the Presence of Different Modifiers and Metal Precursors. ChemElectroChem 2016. [DOI: 10.1002/celc.201600295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roberto A. Martínez-Rodríguez
- Institute of Electrochemistry; University of Alicante; Ap. 99 03080 Alicante Spain
- NASA-URC Center for Advanced Nanoscale Materials (CANM); Department of Chemistry; University of Puerto Rico; Río Piedras Campus, P.O. Box 23346 San Juan 00931-3346 Puerto Rico
| | | | - José Solla- Gullón
- Institute of Electrochemistry; University of Alicante; Ap. 99 03080 Alicante Spain
| | - Carlos R. Cabrera
- NASA-URC Center for Advanced Nanoscale Materials (CANM); Department of Chemistry; University of Puerto Rico; Río Piedras Campus, P.O. Box 23346 San Juan 00931-3346 Puerto Rico
| | - Juan M. Feliu
- Institute of Electrochemistry; University of Alicante; Ap. 99 03080 Alicante Spain
| |
Collapse
|