1
|
Mishra D, LaForge AC, Gorman LM, Díaz-Tendero S, Martín F, Berrah N. Direct tracking of H 2 roaming reaction in real time. Nat Commun 2024; 15:6656. [PMID: 39107291 PMCID: PMC11303762 DOI: 10.1038/s41467-024-49671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/14/2024] [Indexed: 08/10/2024] Open
Abstract
Roaming is an unconventional type of molecular reaction where fragments, instead of immediately dissociating, remain weakly bound due to long-range Coulombic interactions. Due to its prevalence and ability to form new molecular compounds, roaming is fundamental to photochemical reactions in small molecules. However, the neutral character of the roaming fragment and its indeterminate trajectory make it difficult to identify experimentally. Here, we introduce an approach to image roaming, utilizing intense, femtosecond IR radiation combined with Coulomb explosion imaging to directly reconstruct the momentum vector of the neutral roaming H2, a precursor toH 3 + formation, in acetonitrile, CH3CN. This technique provides a kinematically complete picture of the underlying molecular dynamics and yields an unambiguous experimental signature of roaming. We corroborate these findings with quantum chemistry calculations, resolving this unique dissociative process.
Collapse
Affiliation(s)
| | - Aaron C LaForge
- Department of Physics, University of Connecticut, Storrs, CT, 06269, USA.
| | - Lauren M Gorman
- Department of Physics, University of Connecticut, Storrs, CT, 06269, USA
| | - Sergio Díaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, 28049, Madrid, Spain
| | - Nora Berrah
- Department of Physics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
2
|
Mahata P, Maiti B. Photodissociation Dynamics of Methyl Hydroperoxide at 193 nm: A Trajectory Surface-Hopping Study. J Phys Chem A 2021; 125:10321-10329. [PMID: 34807597 DOI: 10.1021/acs.jpca.1c07785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photodissociation of methyl hydroperoxide (CH3OOH) at 193 nm has been studied using a direct dynamics trajectory surface-hopping (TSH) method. The potential energies, energy gradients, and nonadiabatic couplings are calculated on the fly at the MRCIS(6,7)/aug-cc-pVDZ level of theory. The hopping of a trajectory from one electronic state to another is decided on the basis of Tully's fewest switches algorithm. An analysis of the trajectories reveals that the cleavage of the weakest O-O bond leads to major products CH3O(2E) + OH(2Π), contributing about 72.7% of the overall product formation. This OH elimination was completed in the ground degenerate product state where both the ground singlet (S0) and first excited singlet (S1) states become degenerate. The O-H bond dissociation of CH3OOH is a minor channel contributing about 27.3% to product formation, resulting in products CH3OO + H. An inspection of the trajectories indicates that unlike the major channel OH elimination, the H-atom elimination channel makes a significant contribution (∼3% of the overall product formation) through the nonadiabatic pathway via conical intersection S1/S0 leading to ground-state products CH3OO(X 2A″) + H(2S) in addition to adiabatic dissociation in the first excited singlet state, S1, correlating to products CH3OO(1 2A') + H(2S). The computed translational energy of the majority of the OH products is found to be high, distributed in the range of 70 to 100 kcal/mol, indicating that the dissociation takes place on a strong repulsive potential energy surface. This finding is consistent with the nature of the experimentally derived translational energy distribution of OH with an average translational energy of 67 kcal/mol after the excitation of CH3OOH at 193 nm.
Collapse
Affiliation(s)
- Prabhash Mahata
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Biswajit Maiti
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Ekanayake N, Severt T, Nairat M, Weingartz NP, Farris BM, Kaderiya B, Feizollah P, Jochim B, Ziaee F, Borne K, Raju P K, Carnes KD, Rolles D, Rudenko A, Levine BG, Jackson JE, Ben-Itzhak I, Dantus M. H 2 roaming chemistry and the formation of H 3+ from organic molecules in strong laser fields. Nat Commun 2018; 9:5186. [PMID: 30518927 PMCID: PMC6281587 DOI: 10.1038/s41467-018-07577-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/06/2018] [Indexed: 11/11/2022] Open
Abstract
Roaming mechanisms, involving the brief generation of a neutral atom or molecule that stays in the vicinity before reacting with the remaining atoms of the precursor, are providing valuable insights into previously unexplained chemical reactions. Here, the mechanistic details and femtosecond time-resolved dynamics of H3+ formation from a series of alcohols with varying primary carbon chain lengths are obtained through a combination of strong-field laser excitation studies and ab initio molecular dynamics calculations. For small alcohols, four distinct pathways involving hydrogen migration and H2 roaming prior to H3+ formation are uncovered. Despite the increased number of hydrogens and possible combinations leading to H3+ formation, the yield decreases as the carbon chain length increases. The fundamental mechanistic findings presented here explore the formation of H3+, the most important ion in interstellar chemistry, through H2 roaming occurring in ionic species. H2 roaming is associated with H3+ formation when certain organic molecules are exposed to strong laser fields. Here, the mechanistic details and time-resolved dynamics of H3+ formation from a series of alcohols were obtained and found that the product yield decreases as the carbon chain length increases.
Collapse
Affiliation(s)
- Nagitha Ekanayake
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Travis Severt
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Muath Nairat
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Nicholas P Weingartz
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Benjamin M Farris
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Balram Kaderiya
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Peyman Feizollah
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Bethany Jochim
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Farzaneh Ziaee
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Kurtis Borne
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Kanaka Raju P
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Kevin D Carnes
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Benjamin G Levine
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - James E Jackson
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Itzik Ben-Itzhak
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Rauta AK, Maiti B. Trajectory surface hopping study of propane photodissociation dynamics at 157 nm. J Chem Phys 2018; 149:044308. [PMID: 30068164 DOI: 10.1063/1.5037676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photodissociation dynamics of propane molecules has been studied using the quasiclassical trajectory surface hopping (TSH) method in conjunction with Tully's fewest switches algorithm. The trajectories are propagated on potential energy surfaces computed on-the-fly using the multiconfiguration and multireference ab initio method starting in the lowest excited singlet state (HOMO → 3s Rydberg state) of propane at 157 nm with the emphasis on the site specificity of atomic hydrogen elimination, molecular hydrogen elimination, and their product branching ratios. Our dynamics simulation revealed that there are three primary dissociation channels: the atomic hydrogen elimination, the molecular hydrogen elimination, and the C-C bond scission. The trajectories indicate that the H2 elimination from the internal carbon atom (2,2-H2 elimination) and terminal carbon atom (1,1-H2 elimination) is the major process and follows a three centred synchronous concerted mechanism. 1,2-H2 and 1,3-H2 eliminations on the other hand are minor processes and exclusively follow the roaming mediated nonadiabatic dynamics. The probability of elimination of the hydrogen atom from two terminal groups (terminal hydrogen elimination) is greater than that from the internal CH2 group (internal hydrogen elimination). Almost 83% of atomic hydrogen elimination occurs through the asynchronous concerted mechanism from the terminal carbon atom via triple dissociation leading to CH3 + C2H4 + H products. This finding is in good agreement with a recent experimental observation. The present TSH study indicates that approximately one-third of the trajectories those resulted in a triple dissociation channel, CH3 + C2H4 + H completed in the ground singlet state following a nonadiabatic path (hopping from the first excited singlet S1 to the ground state S0) via the C-C and C-H dissociation coordinate conical intersection S1/S0. The products CH3(1 2A2″) + C2H4(1Ag) + H, obtained are ground state methyl radicals and ground state ethylene. The trajectories those ended in a triple dissociation channel CH3 + C2H4 + H adiabatically in the S1 state lead to CH3(1 2A2″) + C2H4 (1 3B1) + H, where singlet methyl radicals and triplet ethylene are formed in their corresponding lowest electronic state via a spin conserving route. Two channels, CH4 + CH3CH and C2H6 + CH2, are found to have minor contributions. In the case of methane elimination, the trajectories that follow an adiabatic path lead to CH3CH(1 1A″) + CH4,(1 1A1), where ethylidene is in the excited state and methane is in the ground state. Methane elimination via nonadiabatic path leads to CH3CH(11A') + CH4(1 1A1), where both ethylidene and methane are in the ground electronic state. Ethane eliminations follow the adiabatic path leading to C2H6(1 1A1g) + CH2(1 1B1) where ethane is in the ground state and methylene is in the first excited state.
Collapse
Affiliation(s)
- Akshaya Kumar Rauta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Biswajit Maiti
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|