1
|
Mendoza-Almanza B, Guerrero-González MDLL, Loredo-Tovias M, García-Arreola ME, Loredo-Osti C, Padilla-Ortega E, Delgado-Sánchez P. AsNAC Genes: Response to High Mercury Concentrations in Allium sativum Seed Clove. BIOTECH 2025; 14:27. [PMID: 40265457 PMCID: PMC12015881 DOI: 10.3390/biotech14020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Heavy metal contamination in soils is a growing concern due to anthropogenic activities, and Allium sativum (garlic) has shown tolerance to mercury pollution. We analyzed the physiological and molecular responses of garlic cloves exposed to HgCl2 at 0, 5000, 23,000, and 46,000 mg/kg for 2, 3, and 4 h. The germination percentage was lower than 46,000 mg/kg Hg for 4 h. We also analyzed the expression levels of NAC transcription factors and found that AsNAC11 had higher expression at 46,000 mg/kg at 2 h; AsNAC17 was underexpressed and the maximum was at 2 h at 23,000 mg/kg. AsNAC20 had the highest expression (30 times more than the control) at 3 and 4 h with 23,000 mg/Kg. AsNAC27 showed the highest expression at 3 h with 23,000 mg/kg. The tissues exhibited a maximum Hg bioconcentration factor of 0.037 at 23,000 mg/kg, indicating moderate mercury absorption. However, at a concentration of 46,000 mg/kg, the BCF decreased to 0.023. Our in-silico analysis revealed that the analyzed AsNACs are associated with various abiotic stress responses. This study provides valuable insights into genes that could be utilized for genetic improvement to enhance crop resistance to mercury soil contamination.
Collapse
Affiliation(s)
- Brenda Mendoza-Almanza
- Biotechnology Laboratory, Faculty of Agronomy and Veterinary, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez CP 78439, SLP., Mexico; (B.M.-A.); (M.d.l.L.G.-G.); (C.L.-O.)
| | - María de la Luz Guerrero-González
- Biotechnology Laboratory, Faculty of Agronomy and Veterinary, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez CP 78439, SLP., Mexico; (B.M.-A.); (M.d.l.L.G.-G.); (C.L.-O.)
| | - Marcos Loredo-Tovias
- Soil and Water Laboratory, Faculty of Engineering, Universidad Autónoma de San Luis Potosí, San Luis Potosí CP 78290, SLP., Mexico;
| | - María Elena García-Arreola
- Environmental Geochemistry Laboratory, Institute of Geology, Universidad Autónoma de San Luis Potosí, San Luis Potosí CP 78290, SLP., Mexico;
| | - Catarina Loredo-Osti
- Biotechnology Laboratory, Faculty of Agronomy and Veterinary, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez CP 78439, SLP., Mexico; (B.M.-A.); (M.d.l.L.G.-G.); (C.L.-O.)
| | - Erika Padilla-Ortega
- Faculty of Chemical Sciences, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez CP 78210, SLP., Mexico;
| | - Pablo Delgado-Sánchez
- Biotechnology Laboratory, Faculty of Agronomy and Veterinary, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez CP 78439, SLP., Mexico; (B.M.-A.); (M.d.l.L.G.-G.); (C.L.-O.)
| |
Collapse
|
2
|
Yin C, Lei W, Wang S, Xie G, Qiu D. Biochar and arbuscular mycorrhizal fungi promote rapid-cycling Brassica napus growth under cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176034. [PMID: 39236812 DOI: 10.1016/j.scitotenv.2024.176034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE To explore the mechanisms of tolerance of Brassica napus to ultra-high concentration cadmium pollution and the synergistic effects of biochar (BC) and Arbuscular mycorrhizal fungi (AMF) on plant growth under cadmium (Cd) stress. RESULTS The application of 5 % BC and inoculation with 10 g AMF significantly promoted the growth and development of B. napus. The combined application of BC and AMF (BC1A and BC2A) was better than the single application. At the Cd 200 mg/kg level, BC1A increased the fresh weight and Cd content of the above-ground parts of B. napus by 35.5 % and decreased by 21.20 %. The SOD and POD activities increased by 30.63 % and 73.37 %. The MDA and H2O2 contents decreased by 40.8 % and 69.99 %, soluble sugar content increased by 37.96 %. At the Cd 300 mg/kg level, BC1A increased the fresh weight and Cd content of the above-ground parts of B. napus by 32.8 % and decreased by 15.99 %. The SOD and POD activities increased by 39.06 % and 93.56 %. The MDA and H2O2 contents decreased by 28.39 % and 72.45 %, and the soluble sugar content increased by 21.16 %. Overall, both BC and AMF treatments alone or in combination (BC1A) were able to alleviate Cd stress and promote plant growth, with the combination of biochar and AMF being the most effective. Furthermore, transcriptome analyses indicated that BC may improve cadmium resistance in B. napus by significantly up-regulating the expression of genes related to peroxidase, photosynthesis, and plant MAPK signaling pathways. AMF may alleviate the toxicity of Cd stress on B. napus by up-regulating the expression of genes related to peroxisomes, phytohormone signaling, and carotenoid biosynthesis. The results of the study will provide support for ecological restoration technology in extremely heavy metal-polluted environments and provide some reference for the application and popularization of BC and AMF conjugation technology.
Collapse
Affiliation(s)
- Chunru Yin
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Research Institute of NCU, Chongqing 402660, China
| | - Weixia Lei
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Sijie Wang
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Research Institute of NCU, Chongqing 402660, China
| | - Gengxin Xie
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; Chongqing Research Institute of NCU, Chongqing 402660, China; Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China.
| | - Dan Qiu
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Research Institute of NCU, Chongqing 402660, China.
| |
Collapse
|
3
|
Phaenark C, Seechanhoi P, Sawangproh W. Metal toxicity in Bryum coronatum Schwaegrichen: impact on chlorophyll content, lamina cell structure, and metal accumulation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1336-1347. [PMID: 38379318 DOI: 10.1080/15226514.2024.2317878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
This research examined the impact of heavy metals, including Cd, Pb, and Zn, on chlorophyll content and lamina cell structure in Bryum coronatum. After exposure to varying metal concentrations (0.015, 0.065, 0.250, 1, and 4 mg/L), chlorophyll content, chloroplast numbers, lamina cell change, and metal accumulation were investigated. Chlorophyll content was assessed using spectrophotometry, whereas chloroplast numbers and lamina cell changes were examined under a light microscope. Metal accumulation was quantified through ICP-MS. The findings revealed that Cd notably reduced chlorophyll a content, while Pb and Zn showed minimal influence. Cd and Pb exposure decreased the number of chloroplasts in lamina cells, with no impact from Zn. The moss's capacity to absorb metals increased with higher exposure levels, indicating its potential as a biomonitor for heavy metal pollution. Cell mortality occurred in response to Cd and Pb, primarily in the median and apical lamina regions, while Zn had no effect. This study sheds light on heavy metal toxicity in B. coronatum, underscoring its significance for environmental monitoring. Further research on the mechanisms and consequences of heavy metal toxicity in bryophytes is essential for a comprehensive understanding of this critical issue.
Collapse
Affiliation(s)
- Chetsada Phaenark
- Conservation Biology Program, School of Interdisciplinary Studies, Mahidol University, Kanchanaburi, Thailand
| | - Paramet Seechanhoi
- Conservation Biology Program, School of Interdisciplinary Studies, Mahidol University, Kanchanaburi, Thailand
| | - Weerachon Sawangproh
- Conservation Biology Program, School of Interdisciplinary Studies, Mahidol University, Kanchanaburi, Thailand
| |
Collapse
|
4
|
Orzeł Ł, Drzewiecka-Matuszek A, Rutkowska-Zbik D, Krasowska A, Fiedor L, van Eldik R, Stochel G. Copper(II)-Assisted Degradation of Pheophytin a by Reactive Oxygen Species. Int J Mol Sci 2024; 25:1831. [PMID: 38339109 PMCID: PMC10855625 DOI: 10.3390/ijms25031831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The central ion Mg2+ is responsible for the differences between chlorophyll a and its free base in their reactivity toward metal ions and thus their resistance to oxidation. We present here the results of spectroscopic (electronic absorption and emission, circular dichroism, and electron paramagnetic resonance), spectroelectrochemical, and computational (based on density functional theory) investigations into the mechanism of pheophytin, a degradation that occurs in the presence of Cu ions and O2. The processes leading to the formation of the linear form of tetrapyrrole are very complex and involve the weakening of the methine bridge due to an electron withdrawal by Cu(II) and the activation of O2, which provides protection to the free ends of the opening macrocycle. These mechanistic insights are related to the naturally occurring damage to the photosynthetic apparatus of plants growing on metal-contaminated soils.
Collapse
Affiliation(s)
- Łukasz Orzeł
- Faculty of Chemistry, Jagiellonian University, 30-387 Cracow, Poland; (A.K.); (R.v.E.); (G.S.)
| | - Agnieszka Drzewiecka-Matuszek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Cracow, Poland; (A.D.-M.); (D.R.-Z.)
| | - Dorota Rutkowska-Zbik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Cracow, Poland; (A.D.-M.); (D.R.-Z.)
| | - Aneta Krasowska
- Faculty of Chemistry, Jagiellonian University, 30-387 Cracow, Poland; (A.K.); (R.v.E.); (G.S.)
| | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland;
| | - Rudi van Eldik
- Faculty of Chemistry, Jagiellonian University, 30-387 Cracow, Poland; (A.K.); (R.v.E.); (G.S.)
- Department of Inorganic and Coordination Chemistry, Nicolaus Copernicus University, 87-100 Torun, Poland
- Department of Chemistry add Pharmacy, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, 30-387 Cracow, Poland; (A.K.); (R.v.E.); (G.S.)
| |
Collapse
|
5
|
Ilyas MZ, Sa KJ, Ali MW, Lee JK. Toxic effects of lead on plants: integrating multi-omics with bioinformatics to develop Pb-tolerant crops. PLANTA 2023; 259:18. [PMID: 38085368 DOI: 10.1007/s00425-023-04296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Lead disrupts plant metabolic homeostasis and key structural elements. Utilizing modern biotechnology tools, it's feasible to develop Pb-tolerant varieties by discovering biological players regulating plant metabolic pathways under stress. Lead (Pb) has been used for a variety of purposes since antiquity despite its toxic nature. After arsenic, lead is the most hazardous heavy metal without any known beneficial role in the biological system. It is a crucial inorganic pollutant that affects plant biochemical and morpho-physiological attributes. Lead toxicity harms plants throughout their life cycle and the extent of damage depends on the concentration and duration of exposure. Higher levels of lead exposure disrupt numerous key metabolic activities of plants including oxygen-evolving complex, organelles integrity, photosystem II connectivity, and electron transport chain. This review summarizes the detrimental effects of lead toxicity on seed germination, crop growth, and yield, oxidative and ultra-structural alterations, as well as nutrient absorption, transport, and assimilation. Further, it discusses the Pb-induced toxic modulation of stomatal conductance, photosynthesis, respiration, metabolic-enzymatic activity, osmolytes accumulation, and antioxidant activity. It is a comprehensive review that reports on omics-based studies along with morpho-physiological and biochemical modifications caused by lead stress. With advances in DNA sequencing technologies, genomics and transcriptomics are gradually becoming popular for studying Pb stress effects in plants. Proteomics and metabolomics are still underrated and there is a scarcity of published data, and this review highlights both their technical and research gaps. Besides, there is also a discussion on how the integration of omics with bioinformatics and the use of the latest biotechnological tools can aid in developing Pb-tolerant crops. The review concludes with core challenges and research directions that need to be addressed soon.
Collapse
Affiliation(s)
- Muhammad Zahaib Ilyas
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kyu Jin Sa
- Department of Crop Science, College of Ecology & Environmental Sciences, Kyungpook National University, Sangju, 37224, Korea
| | - Muhammad Waqas Ali
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Crop Genetics, John Innes Center, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
6
|
Luo Y, Li X, Lin Y, Wu S, Cheng JJ, Yang C. Stress of cupric ion and oxytetracycline in Chlorella vulgaris cultured in swine wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165120. [PMID: 37379923 DOI: 10.1016/j.scitotenv.2023.165120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Chlorella culturing has the advantages in treatment of wastewater including swine wastewater from anaerobic digesters due to the product of biolipids and the uptake of carbon dioxide. However, there often exist high concentrations of antibiotics and heavy metals in swine wastewater which could be toxic to chlorella and harmful to the biological systems. This study examined the stress of cupric ion and oxytetracycline (OTC) at various concentrations on the nutrient removal and biomass growth in Chlorella vulgaris culturing in swine wastewater from anaerobic digesters, and its biochemical responses were also studied. Results showed that dynamic hormesis of either OTC concentration or cupric ion one on Chlorella vulgaris were confirmed separately, and the presence of OTC not only did not limit biomass growth and lipids content of Chlorella vulgaris but also could mitigate the toxicity of cupric ion on Chlorella vulgaris in combined stress of Cu2+ and OTC. Extracellular polymeric substances (EPS) of Chlorella vulgaris were used to explain the mechanisms of stress for the first time. The content of proteins and carbohydrates in EPS increased, and the fluorescence spectrum intensity of tightly-bound EPS (TB-EPS) of Chlorella vulgaris decreased with increasing concentration of stress because Cu2+ and OTC may be chelated with proteins of TB-EPS to form non-fluorescent characteristic chelates. The low concentration of Cu2+ (≤1.0 mg/L) could enhance the protein content and promote the activity of superoxide dismutase (SOD) while these parameters were decreased drastically under 2.0 mg/L of Cu2+. The activity of adenosine triphosphatase (ATPase) and glutathione (GSH) enhanced with the increase of OTC concentration under combined stress. This study helps to comprehend the impact mechanisms of stress on Chlorella vulgaris and provides a novel strategy to improve the stability of microalgae systems for wastewater treatment.
Collapse
Affiliation(s)
- Yun Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Xiang Li
- Hunan Urban and Rural Environmental Construction Co.., Ltd., Changsha, Hunan 410118, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan 410001, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jay J Cheng
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan 410001, China.
| |
Collapse
|
7
|
Synthesis of metalloporphyrin complexes based on chlorophyllin. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Effect of Cadmium and Copper Exposure on Growth, Physio-Chemicals and Medicinal Properties of Cajanus cajan L. (Pigeon Pea). Metabolites 2021; 11:metabo11110769. [PMID: 34822427 PMCID: PMC8623172 DOI: 10.3390/metabo11110769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 01/24/2023] Open
Abstract
Soil contamination with heavy metals is an emerging concern in the modern era, affecting all forms of life. Pigeon pea is a multi-use shrub with medicinal and nutritional values. On the basis of a randomized complete design, we investigated in the current project the combined cadmium (Cd) and copper (Cu) effect on plant growth and physio-chemical/medicinal properties of pigeon pea. Three-week-old seedlings were grown in combined Cd and Cu amended soil with increasing metal concentrations (control, 20 + 30 mg/kg, 40 + 60 mg/kg, and 60 + 90 mg/kg) for three months. At high-dose metal cumulative stress (60 + 90 mg/kg), plant shoot and root growth in terms of plant height as well as fresh and dry weight were significantly inhibited in association with decreased photosynthetic attributes (chlorophyll a and b contents, net photosynthesis, transpiration rate, stomatal conductance, intercellular CO2 concentrations) and diminished nutrient contents. Cd and Cu at high amounts inflicted oxidative stresses as assessed in elevated lipid peroxidation (MDA), hydrogen peroxide (H2O2), and electrolyte leakage contents. Antioxidant enzyme activities, namely, those of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione peroxidase (GPX), were enhanced, along with proline content with increasing metal quantity. Phenolics and flavonoids exhibited a diverse response regarding metal concentration, and their biosynthesis was significantly suppressed at high Cd and Cu cumulative stress. The reduction in secondary metabolites may account for declined medicinal properties of pigeon pea as appraised in reduced antibacterial, 2, 2-diphenyl-1-picrylhydrazyl (DPPH), and ferric-reducing antioxidant potential (FRAP) activities. Our results clearly demonstrate that the exposure of pigeon pea to Cd- and Cu-contaminated soil might affect consumers due to the presence of metals and the negligible efficacy of the herbal products.
Collapse
|
9
|
Anjum S, Hussain M, Hameed M, Ahmad R. Physiological, Biochemical and Defense System Responses of Roadside Vegetation to Auto-Exhaust Pollution. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:946-954. [PMID: 34626210 DOI: 10.1007/s00128-021-03368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
This study determined the effects of traffic pollutants on plants (Nerium oleander and Ricinus communis) growing along Faisalabad to Okara (R-1) and Okara to Lahore (R-2) roads in Pakistan. The photosynthetic pigments, photosynthetic rate, transpiration rate and total soluble proteins of roadside vegetation were significantly lower than control plants (50 m away from road). The average decrease in photosynthetic rate of Nerium oleander and Ricinus communis was 33.90% and 27.94% along R-1 and 41.85% and 32.409% along R-2 road, respectively. The decreased photosynthesis in roadside flora resulted in higher water use efficiency and substomatal CO2 concentration. However, higher antioxidant activity and free amino acid contents were noted in roadside plants that might be due to their defensive response to traffic pollutants. N. oleander was more affected by traffic pollutants and R. communis showed more resistance. Thus, N. oleander could be used for biomonitoring and R. communis for phytoremediation of vehicular pollution.
Collapse
Affiliation(s)
- Sumreen Anjum
- Institute of Botany, University of the Punjab, Lahore, Pakistan.
| | - Mumtaz Hussain
- Department of Botany, Faculty of Sciences, University of Agricuture, Faisalabad, Pakistan
| | - Mansoor Hameed
- Department of Botany, Faculty of Sciences, University of Agricuture, Faisalabad, Pakistan
| | - Rashid Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
10
|
Komatsu Y, Takizawa K. A quantum chemical study on the effects of varying the central metal in extended photosynthetic pigments. Phys Chem Chem Phys 2021; 23:14404-14414. [PMID: 34180470 DOI: 10.1039/d1cp00760b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a certain period of Earth's history, chlorophylls with Mg as their central metal would have been selected as the major photosynthetic pigments, reflecting the radiation in habitats. Assuming evolution in different light and material environments, different photosynthetic pigments would occur. This study is the first attempt to evaluate the physical and chemical properties of model photosynthetic pigments and their potential to function in a variety of light environments using quantum chemistry calculations. Specifically, bacteriochlorophyll b (Bchl b), phthalocyanine (Pht) and meso-dibenzoporphycene (mDBPc) were selected as template molecules, while Be, Mg, Ca, Ni, Zn, Sr, Pd, Cd, Ba, Pt, Hg, Pb and H2 were examined as the central metals in each molecule in various solvents. The results showed that the light absorption by each of these compounds varied over a range of 100 nm depending on the central metal and the surrounding solvent, and Pb produced the largest red shift in the absorption bands of all three photosynthetic pigments. The Pht molecules showed similar redox properties to the chlorophylls, suggesting that these derivatives could be substituted for the special pairs in reaction centers, while the mDBPc molecules appear to be more suitable as accessory pigments due to their extraordinarily broad absorption ranges of approximately 500 nm depending on the conditions.
Collapse
Affiliation(s)
- Yu Komatsu
- AstroBiology Center, Osawa 2-21-1, Mitaka, Tokyo, Japan. and National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo, Japan
| | - Kenji Takizawa
- AstroBiology Center, Osawa 2-21-1, Mitaka, Tokyo, Japan. and National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
11
|
Grajek H, Rydzyński D, Piotrowicz-Cieślak A, Herman A, Maciejczyk M, Wieczorek Z. Cadmium ion-chlorophyll interaction - Examination of spectral properties and structure of the cadmium-chlorophyll complex and their relevance to photosynthesis inhibition. CHEMOSPHERE 2020; 261:127434. [PMID: 32717505 DOI: 10.1016/j.chemosphere.2020.127434] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/03/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Chlorophyll was shown to spontaneously form a complex with cadmium, which is incorporated at the central position of the chlorophyll molecule porphyrin ring, where it replaces magnesium. The rate of complex formation depended on the ratio of Cd2+ ions to chlorophyll concentration in the solution. In solutions with chlorophyll concentration of C = 1 × 10-5 M and Cd2+ concentrations of C = 1 × 10-5 M, C = 1 × 10-3 M and C = 9 × 10-3 M, Cd-Chl complex formation was completed after 200 h, 50 h and 33 h, respectively. The formation of Cd-Chl complex followed the second order over all substrates reaction order, first order over Cd2+ concentration and first over Chl concentration. The pseudo second order reaction rate constant k, when Cd2+ concentration was equal Chl concentration have been obtained as k = 1.510 ± 0.023 × 10-4 M-1min-1. Quantum chemistry computations showed that Cd-chlorophyll complex existed in two conformations in the methanol solution with cadmium ion placed either below or above the coordination plane. Two times smaller overlap integral of the Chl fluorescence spectrum with the Cd-Chl absorption spectrum IChl,Cd-Chl= 2.4223 × 10-13 cm3/M in comparison with the overlap integral of the Chl fluorescence spectrum with the Chl absorption spectrum IChl,Chl= 4.6210 × 10-13 cm3/M (twice lower probability of energy transfer Chl∗ → Cd-Chl than Chl∗ → Chl) and lower Förster critical distance for resonance energy transfer: RoChl→Cd-Chl= 46.773 Å, RoChl→Chl= 52.086 Å, indicated that in plants intoxicated with cadmium, taken up from the contaminated soil, the energy transfer between Chl and Cd-Chl in antennas will be disturbed, which may be one of the reasons for the inhibition of photosynthesis.
Collapse
Affiliation(s)
- Hanna Grajek
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland.
| | - Dariusz Rydzyński
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland; Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland
| | - Agnieszka Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland
| | - Aleksander Herman
- Gdańsk University of Technology, Department of Inorganic Chemistry, Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| | - Maciej Maciejczyk
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland
| | - Zbigniew Wieczorek
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland
| |
Collapse
|
12
|
|
13
|
Franić M, Galić V. As, Cd, Cr, Cu, Hg: Physiological Implications and Toxicity in Plants. PLANT METALLOMICS AND FUNCTIONAL OMICS 2019:209-251. [DOI: 10.1007/978-3-030-19103-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Mathiyalagan S, Mandal BK, Sinha M, Ling YC. Synthesis of different metallochlorophyllins and quantification in food samples by reversed phase – high performance liquid chromatography. Nat Prod Res 2018; 33:3120-3126. [DOI: 10.1080/14786419.2018.1521403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Siva Mathiyalagan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, India
| | - Badal Kumar Mandal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, India
| | - Madhulika Sinha
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
15
|
DFT and TD-DFT Studies of Mg-Substitution in Chlorophyll by Cr(II), Fe(II) and Ni(II). CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s42250-018-0003-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Concentration Effect on Quenching of Chlorophyll a Fluorescence by All-Trans-β-Carotene in Photosynthesis. Molecules 2017; 22:molecules22101585. [PMID: 28934156 PMCID: PMC6151392 DOI: 10.3390/molecules22101585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 11/17/2022] Open
Abstract
Absorption, fluorescence spectra of chlorophyll a (Chl-a) and all-trans-β-carotene (β-Car) mixing solution are investigated in different polarity and polarizability solvents. The carotenoids regulate the energy flow in photosynthesis by interaction with chlorophyll, leading to an observable reduction of Chl-a fluorescence. The fluorescence red shifts with the increasing solvent polarizability. The energy transfer in the Chl-a and β-Car system is proposed. The electron transfer should be dominant in quenching Chl-a fluorescence rather than the energy transfer in this system. Polar solvent with large polarizability shows high quenching efficiency. When dissolved in carbon tetrachloride, Chl-a presents red shift of absorption and blue shift of fluorescence spectra with increasing β-Car concentration, which implies a Chl-a conformational change.
Collapse
|
17
|
Orzeł Ł, Waś J, Kania A, Susz A, Rutkowska-Zbik D, Staroń J, Witko M, Stochel G, Fiedor L. Factors controlling the reactivity of divalent metal ions towards pheophytin a. J Biol Inorg Chem 2017. [PMID: 28639057 PMCID: PMC5517585 DOI: 10.1007/s00775-017-1472-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, we evaluate the factors which determine the reactivity of divalent metal ions in the spontaneous formation of metallochlorophylls, using experimental and computational approaches. Kinetic studies were carried out using pheophytin a in reactions with various divalent metal ions combined with non- or weakly-coordinative counter ions in a series of organic solvents. To obtain detailed insights into the solvent effect, the metalations with the whole set of cations were investigated in three solvents and with Zn2+ in seven solvents. The reactions were monitored using electronic absorption spectroscopy and the stopped-flow technique. DFT calculations were employed to shed light on the role of solvent in activating the metal ions towards porphyrinoids. This experimental and computational analysis gives detailed information regarding how the solvent and the counter ion assist/hinder the metalation reaction as activators/inhibitors. The metalation course is dictated to a large extent by the reaction medium, via either the activation or deactivation of the incoming metal ion. The solvent may affect the metalation in several ways, mainly via H-bonding with pyrrolenine nitrogens and the activation/deactivation of the incoming cation. It also seems to affect the activation enthalpy by causing slight conformational changes in the macrocyclic ligand. These new mechanistic insights contribute to a better understanding of the “metal–counterion–solvent” interplay in the metalation of porphyrinoids. In addition, they are highly relevant to the mechanisms of metalation reactions catalyzed by chelatases and explain the differences between the insertion of Mg2+ and other divalent cations.
Collapse
Affiliation(s)
- Ł Orzeł
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland.
| | - J Waś
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - A Kania
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| | - A Susz
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - D Rutkowska-Zbik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - J Staroń
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - M Witko
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - G Stochel
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - L Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|