1
|
Tsizin S, Ban L, Chasovskikh E, Yoder BL, Signorell R. Valence photoelectron imaging of molecular oxybenzone. Phys Chem Chem Phys 2024; 26:19236-19246. [PMID: 38957915 PMCID: PMC11253247 DOI: 10.1039/d3cp06224d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
An oxybenzone molecule in the gas phase was characterized by mass spectrometry and angle-resolved photoelectron spectroscopy, using both single and multiphoton ionization schemes. A tabletop high harmonic generation source with a monochromator was used for single-photon ionization of oxybenzone with photon energies of up to 35.7 eV. From this, vertical ionization and appearance energies, as well as energy-dependent anisotropy parameters were retrieved and compared with the results from DFT calculations. For two-photon ionization using 4.7 eV light, we found a higher appearance energy than in the extreme ultraviolet (EUV) case, highlighting the possible influence of an intermediate state on the photoionization process. We found no differences in the mass spectra when ionizing oxybenzone by single-photons between 17.2 and 35.7 eV. However, for the multiphoton ionization, the fragmentation process was found to be sensitive to the photoionization order and laser intensity. The "softest" method was found to be two-photon ionization using 4.7 eV light, which led to no measurable fragmentation up to an intensity of 5 × 1012 W cm-2.
Collapse
Affiliation(s)
- Svetlana Tsizin
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| | - Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| | - Egor Chasovskikh
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| |
Collapse
|
2
|
Kotsina N, Brahms C, Jackson SL, Travers JC, Townsend D. Spectroscopic application of few-femtosecond deep-ultraviolet laser pulses from resonant dispersive wave emission in a hollow capillary fibre. Chem Sci 2022; 13:9586-9594. [PMID: 36091901 PMCID: PMC9400683 DOI: 10.1039/d2sc02185d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
We exploit the phenomenon of resonant dispersive wave (RDW) emission in gas-filled hollow capillary fibres (HCFs) to realize time-resolved photoelectron imaging (TRPEI) measurements with an extremely short temporal resolution. By integrating the output end of an HCF directly into a vacuum chamber assembly we demonstrate two-colour deep ultraviolet (DUV)-infrared instrument response functions of just 10 and 11 fs at central pump wavelengths of 250 and 280 nm, respectively. This result represents an advance in the current state of the art for ultrafast photoelectron spectroscopy. We also present an initial TRPEI measurement investigating the excited-state photochemical dynamics operating in the N-methylpyrrolidine molecule. Given the substantial interest in generating extremely short and highly tuneable DUV pulses for many advanced spectroscopic applications, we anticipate our first demonstration will stimulate wider uptake of the novel RDW-based approach for studying ultrafast photochemistry - particularly given the relatively compact and straightforward nature of the HCF setup.
Collapse
Affiliation(s)
- Nikoleta Kotsina
- Institute of Photonics & Quantum Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Christian Brahms
- Institute of Photonics & Quantum Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Sebastian L Jackson
- Institute of Photonics & Quantum Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - John C Travers
- Institute of Photonics & Quantum Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
- Institute of Chemical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| |
Collapse
|
3
|
Chang XP, Yu L, Zhang TS, Cui G. Quantum mechanics/molecular mechanics studies on the mechanistic photophysics of sunscreen oxybenzone in methanol solution. Phys Chem Chem Phys 2022; 24:13293-13304. [PMID: 35607908 DOI: 10.1039/d2cp01263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we have employed the QM(CASPT2//CASSCF)/MM method to explore the photophysical and photochemical mechanism of oxybenzone (OB) in methanol solution. Based on the optimized minima, conical intersections and crossing points, and minimum-energy reaction paths related to excited-state intramolecular proton transfer (ESIPT) and excited-state decay paths in the 1ππ*, 1nπ*, 3ππ*, 3nπ*, and S0 states, we have identified several feasible excited-state relaxation pathways for the initially populated S2(1ππ*) state to decay to the initial enol isomer' S0 state. The major one is the singlet-mediated and stretch-torsion coupled ESIPT pathway, in which the system first undergoes an essentially barrierless 1ππ* ESIPT process to generate the 1ππ* keto species, and finally realizes its ground state recovery through the subsequent carbonyl stretch-torsion facilitating S1 → S0 internal conversion (IC) and the reverse ground-state intramolecular proton transfer (GSIPT) process. The minor ones are related to intersystem crossing (ISC) processes. At the S2(1ππ*) minimum, an S2(1ππ*)/S1(1nπ*)/T2(3nπ*) three-state intersection region helps the S2 system branch into the T1 state through a S2 → S1 → T1 or S2 → T2 → T1 process. Once it has reached the T1 state, the system may relax to the S0 state via direct ISC or via subsequent nearly barrierless 3ππ* ESIPT to yield the T1 keto tautomer and ISC. The resultant S0 keto species significantly undergoes reverse GSIPT and only a small fraction yields the trans-keto form that relaxes back more slowly. However, due to small spin-orbit couplings at T1/S0 crossing points, the ISC to S0 state occurs very slowly. The present work rationalizes not only the ultrafast excited-state decay dynamics of OB but also its phosphorescence emission at low temperature.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Li Yu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Racovita AD. Titanium Dioxide: Structure, Impact, and Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095681. [PMID: 35565075 PMCID: PMC9104107 DOI: 10.3390/ijerph19095681] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 12/27/2022]
Abstract
Titanium dioxide, first manufactured a century ago, is significant in industry due to its chemical inertness, low cost, and availability. The white mineral has a wide range of applications in photocatalysis, in the pharmaceutical industry, and in food processing sectors. Its practical uses stem from its dual feature to act as both a semiconductor and light scatterer. Optical performance is therefore of relevance in understanding how titanium dioxide impacts these industries. Recent breakthroughs are summarised herein, focusing on whether restructuring the surface properties of titanium dioxide either enhances or inhibits its reactivity, depending on the required application. Its recent exposure as a potential carcinogen to humans has been linked to controversies around titanium dioxide's toxicity; this is discussed by illustrating discrepancies between experimental protocols of toxicity assays and their results. In all, it is important to review the latest achievements in fast-growing industries where titanium dioxide prevails, while keeping in mind insights into its disputed toxicity.
Collapse
Affiliation(s)
- Anca Diana Racovita
- Department of Chemistry, Faculty of Science, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
5
|
Wong NK, Rankine CD, Dessent CEH. Linking Electronic Relaxation Dynamics and Ionic Photofragmentation Patterns for the Deprotonated UV Filter Benzophenone-4. J Phys Chem Lett 2021; 12:2831-2836. [PMID: 33719458 PMCID: PMC8041369 DOI: 10.1021/acs.jpclett.1c00423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Understanding how deprotonation impacts the photophysics of UV filters is critical to better characterize how they behave in key alkaline environments including surface waters and coral reefs. Using anion photodissociation spectroscopy, we have measured the intrinsic absorption electronic spectroscopy (400-214 nm) and numerous accompanying ionic photofragmentation pathways of the benzophenone-4 anion ([BP4-H]-). Relative ion yield plots reveal the locations of the bright S1 and S3 excited states. For the first time for an ionic UV filter, ab initio potential energy surfaces are presented to provide new insight into how the photofragment identity maps the relaxation pathways. These calculations reveal that [BP4-H]- undergoes excited-state decay consistent with a statistical fragmentation process where the anion breaks down on the ground state after nonradiative relaxation. The broader relevance of the results in providing a basis for interpreting the relaxation dynamics of a wide range of gas-phase ionic systems is discussed.
Collapse
Affiliation(s)
- Natalie
G. K. Wong
- Department
of Chemistry, University of York, Heslington, York, YO10 5DD, U.K.
| | - Conor D. Rankine
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle-upon-Tyne, NE1 7RU, U.K.
| | | |
Collapse
|
6
|
Chang XP, Zhang TS, Fang YG, Cui G. Quantum Mechanics/Molecular Mechanics Studies on the Photophysical Mechanism of Methyl Salicylate. J Phys Chem A 2021; 125:1880-1891. [PMID: 33645980 DOI: 10.1021/acs.jpca.0c10589] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methyl salicylate (MS) as a subunit of larger salicylates found in commercial sunscreens has been shown to exhibit keto-enol tautomerization and dual fluorescence emission via excited-state intramolecular proton transfer (ESIPT) after the absorption of ultraviolet (UV) radiation. However, its excited-state relaxation mechanism is unclear. Herein, we have employed the quantum mechanics(CASPT2//CASSCF)/molecular mechanics method to explore the ESIPT and excited-state relaxation mechanism of MS in the lowest three electronic states, that is, S0, S1, and T1 states, in a methanol solution. Based on the optimized geometric and electronic structures, conical intersections and crossing points, and minimum-energy paths combined with the computed linearly interpolated Cartesian coordinate paths, the photophysical mechanism of MS has been proposed. The S1 state is a spectroscopically bright 1ππ* state in the Franck-Condon region. From the initially populated S1 state, there exist three nonradiative relaxation paths to repopulate the S0 state. In the first one, the S1 system (i.e., ketoB form) first undergoes an ESIPT path to generate an S1 tautomer (i.e., enol form) that exhibits a large Stokes shift in experiments. The generated S1 enol tautomer further evolves toward the nearby S1/S0 conical intersection and then hops to the S0 state, followed by the backward ground-state intramolecular proton transfer (GSIPT) to the initial ketoB form S0 state. In the second one, the S1 system first hops through the S1 → T1 intersystem crossing (ISC) to the T1 state, which then further decays to the S0 state via T1 → S0 ISC at the T1/S0 crossing point. In the third path, the T1 system that stems from the S1 → T1 ISC process via the S1/T1 crossing point first takes place a T1 ESIPT to generate a T1 enol tautomer, which can further decay to the S0 state via T1-to-S0 ISC. Finally, the GSIPT occurs to back the system to the initial ketoB form S0 state. Our present work could contribute to understanding the photophysics of MS and its derivatives.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
7
|
Kotsina N, Townsend D. Improved insights in time-resolved photoelectron imaging. Phys Chem Chem Phys 2021; 23:10736-10755. [DOI: 10.1039/d1cp00933h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review new light source developments and data analysis considerations relevant to the time-resolved photoelectron imaging technique. Case studies illustrate how these themes may enhance understanding in studies of excited state molecular dynamics.
Collapse
Affiliation(s)
- Nikoleta Kotsina
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
- Institute of Chemical Sciences
| |
Collapse
|
8
|
Cao CN, Liu CF, Zhao L, Rao GW. New insight into the photoinduced wavelength dependent decay mechanisms of the ferulic acid system on the excited states. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118565. [PMID: 32554260 DOI: 10.1016/j.saa.2020.118565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The ferulic acid (FA) is a kind of phenolic acid widely exists in nature plants. Apart from its medicinal values, the FA is also widely applied in cosmetic industry. Recently, it was found to have potential applications in commercial sunscreens for its strong photostability and photoprotection property from harmful UV rays. Such excellent property lies in the ultrafast decay process of the FA system when exposure to the UV light, but the underlying detailed relaxation pathway is still less clear-cut. In the current work, high-level ab initio electronic structure calculations and on-the-fly surface hopping dynamics simulations were employed to explore the photoinduced decay mechanism of the FA system both on the S1 and S3 states in the gas phase. The results provide a reasonable explanation for the wavelength dependent decay patterns of FA system. The S1 state decay pathway is driven by a re-emission process to dissipate excess energy. While for the S3 state deactivation process, the pathway is dominated by a non-adiabatic process driven by the internal conversion process through the conical intersection regions. A S3-S1-S0 two step decay pattern is proposed, and the pathways are mainly driven by a puckering distortion motion of the aromatic ring and a twisting motion around the bridging double bond. The calculation results contribute to a better understanding of detailed dynamics behavior of the FA deactivation process, and provide theoretical guidance for further design of efficient and environmentally friendly sunscreens.
Collapse
Affiliation(s)
- Cong-Neng Cao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Cheng-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Li Zhao
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
9
|
Paterson MJ, Townsend D. Rydberg-to-valence evolution in excited state molecular dynamics. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1815389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Dave Townsend
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, UK
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
10
|
Kotsina N, Candelaresi M, Saalbach L, Zawadzki MM, Crane SW, Sparling C, Townsend D. Short-wavelength probes in time-resolved photoelectron spectroscopy: an extended view of the excited state dynamics in acetylacetone. Phys Chem Chem Phys 2020; 22:4647-4658. [DOI: 10.1039/d0cp00068j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved photoelectron spectroscopy using a vacuum ultraviolet probe brings new insight to the excited state dynamics operating in acetylacetone.
Collapse
Affiliation(s)
- Nikoleta Kotsina
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Marco Candelaresi
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Lisa Saalbach
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | | | - Stuart W. Crane
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Chris Sparling
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
- Institute of Chemical Sciences
| |
Collapse
|
11
|
Chang XP, Fang YG, Cui G. QM/MM Studies on the Photophysical Mechanism of a Truncated Octocrylene Model. J Phys Chem A 2019; 123:8823-8831. [PMID: 31550143 DOI: 10.1021/acs.jpca.9b07280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Methyl 2-cyano-3,3-diphenylacrylate (MCDPA) shares the same molecular skeleton with octocrylene (OCR) that is one of the most common molecules used in commercially available sunscreens. However, its excited-state relaxation mechanism is unclear. Herein, we have used the QM(CASPT2//CASSCF)/MM method to explore spectroscopic properties, geometric and electronic structures, relevant conical intersections and crossing points, and excited-state relaxation paths of MCDPA in methanol solution. We found that in the Franck-Condon (FC) region, the V(1ππ*) state is energetically lower than the V'(1ππ*) state only by 2.8 kcal/mol and is assigned to experimentally observed maximum absorption band. From these two initially populated singlet states, there exist three nonradiative relaxation paths to repopulate the S0 state. In the first one, when the V(1ππ*) state is populated in the FC region, the system diabatically evolves along the V(1ππ*) state into its minimum where the internal conversion to S0 occurs. In the second one, the V'(1ππ*) state is populated in the FC region and the system adiabatically overcomes a barrier of ca. 3.0 kcal/mol to approach the V(1ππ*) minimum eventually leading to a V(1ππ*)-to-S0 internal conversion. In the third one, the V'(1ππ*) state first hops via the intersystem crossing to the T2 state, which then decays through the internal conversion to the T1 state. The T1 state is finally converted to the S0 state via the T1/S0 crossing point. Our present work contributes to understanding the photophysics of OCR and its variants.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang 464000 , P. R. China
| | - Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| |
Collapse
|
12
|
Holt EL, Stavros VG. Applications of ultrafast spectroscopy to sunscreen development, from first principles to complex mixtures. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2019.1663062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emily L. Holt
- Molecular Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | | |
Collapse
|
13
|
Barbosa JS, Neto DMA, Freire RM, Rocha JS, Fechine LMUD, Denardin JC, Valentini A, de Araújo TG, Mazzetto SE, Fechine PBA. Ultrafast sonochemistry-based approach to coat TiO 2 commercial particles for sunscreen formulation. ULTRASONICS SONOCHEMISTRY 2018; 48:340-348. [PMID: 30080559 DOI: 10.1016/j.ultsonch.2018.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
TiO2 is a common inorganic filter used in sunscreens due to its photoprotective effect on the skin against UV radiation. However, the use of this kind of material in cosmetics is limited by its inherent photocatalytic activity. It is known that coating on TiO2 surface can improve some features. Although, many of the methodologies used for this purpose are still laborious and time-consuming. Thus, this work reports a novel, easy, cheap and fast strategy to coat TiO2 particles by using a sonochemistry approach, aiming to decrease photocatalytic activity and to enhance colloidal stability. For this proposal, SiO2, Al2O3, ZrO2 and sodium polyacrylate (PAANa) were used to tune the surface of commercial TiO2 particles and they were applied in a sunscreen formulation. The samples were characterized by XRPD, FT-IR, DLS, EDS, SEM and TEM. The photocatalytic activity and UV-shielding ability were also evaluated. The sunscreen formulations were prepared and characterized by zeta potential, DLS, and Sun Protection Factor (SPF). FT-IR, EDS, and charge surface of the particles confirmed the success of the sonochemistry coating. Additionally, TiO2@Al2O3, TiO2@SiO2 and TiO2@PAANa show a lower photocatalytic activity than original TiO2 with similar UV-shielding ability. The sunscreens produced with the coated TiO2 have similar SPF to the one with commercial TiO2. Specifically, the sunscreen with TiO2@PAANa shows an increase in colloidal stability. Herein, the incorporation of the sonochemical-coated TiO2 particles in sunscreen formulations may produce sunscreens with better aesthetic appearance and a greater health security due to its lower free radicals production.
Collapse
Affiliation(s)
- J S Barbosa
- Group of Chemistry of Advanced Materials (GQMat) - Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, CE, Brazil
| | - D M A Neto
- Group of Chemistry of Advanced Materials (GQMat) - Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, CE, Brazil; Natural Science and Mathematics Institute, University for International Integration of the Afro-Brazilian Lusophony - UNILAB, Campus dos Palmares, Redenção, CE, Brazil
| | - R M Freire
- Department of Physics, Universidad de Santiago de Chile and CEDENNA, USACH, Av. Ecuador, 3493 Santiago, Chile.
| | - J S Rocha
- Group of Chemistry of Advanced Materials (GQMat) - Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, CE, Brazil.
| | - L M U D Fechine
- Group of Chemistry of Advanced Materials (GQMat) - Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, CE, Brazil
| | - J C Denardin
- Department of Physics, Universidad de Santiago de Chile and CEDENNA, USACH, Av. Ecuador, 3493 Santiago, Chile; Departament of Physics, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| | - A Valentini
- Laboratory of Adsorption and Catalysis (Langmuir) - Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, CE, Brazil.
| | - T G de Araújo
- Laboratory of Cosmetology, Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, CE, Brazil
| | - S E Mazzetto
- Group of Chemistry of Advanced Materials (GQMat) - Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, CE, Brazil.
| | - P B A Fechine
- Group of Chemistry of Advanced Materials (GQMat) - Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Baker LA, Marchetti B, Karsili TNV, Stavros VG, Ashfold MNR. Photoprotection: extending lessons learned from studying natural sunscreens to the design of artificial sunscreen constituents. Chem Soc Rev 2018; 46:3770-3791. [PMID: 28580469 DOI: 10.1039/c7cs00102a] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Evolution has ensured that plants and animals have developed effective protection mechanisms against the potentially harmful effects of incident ultraviolet radiation (UVR). Tanning is one such mechanism in humans, but tanning only occurs post-exposure to UVR. Hence, there is ever growing use of commercial sunscreens to pre-empt overexposure to UVR. Key requirements for any chemical filter molecule used in such a photoprotective capacity include a large absorption cross-section in the UV-A and UV-B spectral regions and the availability of one or more mechanisms whereby the absorbed photon energy can be dissipated without loss of the molecular integrity of the chemical filter. Here we summarise recent experimental (mostly ultrafast pump-probe spectroscopy studies) and computational progress towards unravelling various excited state decay mechanisms that afford the necessary photostability in chemical filters found in nature and those used in commercial sunscreens. We also outline ways in which a better understanding of the photophysics and photochemistry of sunscreen molecules selected by nature could aid the design of new and improved commercial sunscreen formulations.
Collapse
Affiliation(s)
- Lewis A Baker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Barbara Marchetti
- Department of Chemistry, University of Pennsylvania, Philadelphia, USA
| | | | - Vasilios G Stavros
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
15
|
Abstract
Despite the pivotal role of ultraviolet (UV) radiation in sustaining life on Earth, overexposure to this type of radiation can have catastrophic effects, such as skin cancer. Sunscreens, the most common form of artificial protection against such harmful effects, absorb UV radiation before it reaches vulnerable skin cells. Absorption of UV radiation prompts ultrafast molecular events in sunscreen molecules which, ideally, would allow for fast and safe dissipation of the excess energy. However, our knowledge of these mechanisms remains limited. In this article, we will review recent advances in the field of ultrafast photodynamics (light induced molecular processes occurring within femtoseconds, fs, 10-15 s to picoseconds, ps, 10-12 s) of sunscreens. We follow a bottom-up approach to common sunscreen active ingredients, analysing any emerging trends from the current literature on the subject. Moreover, we will identify the main questions that remain unanswered, pinpoint some of the main challenges and finally comment on the outlook of this exciting field of research.
Collapse
|
16
|
Kotsina N, Townsend D. Relative detection sensitivity in ultrafast spectroscopy: state lifetime and laser pulse duration effects. Phys Chem Chem Phys 2017; 19:29409-29417. [DOI: 10.1039/c7cp05426b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excited state lifetime and laser pulse duration have important implications for effective relative detection sensitivity in time-resolved spectroscopy.
Collapse
Affiliation(s)
- Nikoleta Kotsina
- Institute of Photonics & Quantum Sciences, Heriot-Watt University
- Edinburgh
- UK
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences, Heriot-Watt University
- Edinburgh
- UK
- Institute of Chemical Sciences
- Heriot-Watt University
| |
Collapse
|
17
|
Baker LA, Greenough SE, Stavros VG. A Perspective on the Ultrafast Photochemistry of Solution-Phase Sunscreen Molecules. J Phys Chem Lett 2016; 7:4655-4665. [PMID: 27791379 DOI: 10.1021/acs.jpclett.6b02104] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sunscreens are one of the most common ways of providing on-demand additional photoprotection to the skin. Ultrafast transient absorption spectroscopy has recently proven to be an invaluable tool in understanding how the components of commercial sunscreen products display efficient photoprotection. Important examples of how this technique has unravelled the photodynamics of common components are given in this Perspective, and some of the remaining unanswered questions are discussed.
Collapse
Affiliation(s)
- Lewis A Baker
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Simon E Greenough
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, United Kingdom
| | - Vasilios G Stavros
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|