1
|
Eyberg J, Ringenberg M, Richert C. Caging of a Strongly Pairing Fluorescent Thymidine Analog with Soft Nucleophiles. Chemistry 2023; 29:e202203289. [PMID: 36395348 PMCID: PMC10107337 DOI: 10.1002/chem.202203289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Controlling the pairing strength of nucleobases in DNA through reactions with compounds found inside the cell is a formidable challenge. Here we report how a thiazolyl substituent turns a strongly pairing ethynylpyridone C-nucleoside into a reactive residue in oligonucleotides. The thiazolyl-bearing pyridone reacts with soft nucleophiles, such as glutathione, but not with hard nucleophiles like hydroxide or carbonate. The addition products pair much more weakly with adenine in a complementary strand than the starting material, and also change their fluorescence. This makes oligonucleotides containing the new deoxynucleoside interesting for controlled release. Due to its reactivity toward N, P, S, and Se-nucleophiles, and the visual signal accompanying chemical conversion, the fluorescent nucleotide reported here may also have applications in chemical biology, sensing and diagnostics.
Collapse
Affiliation(s)
- Juri Eyberg
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Mark Ringenberg
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
2
|
Martínez FA, Adler NS, Cavasotto CN, Aucar GA. Solvent effects on the NMR shieldings of stacked DNA base pairs. Phys Chem Chem Phys 2022; 24:18150-18160. [PMID: 35861154 DOI: 10.1039/d2cp00398h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stacking effects are among the most important effects in DNA. We have recently studied their influence in fragments of DNA through the analysis of NMR magnetic shieldings, firstly in vacuo. As a continuation of this line of research we show here the influence of solvent effects on the shieldings through the application of both explicit and implicit models. We found that the explicit solvent model is more appropriate for consideration due to the results matching better in general with experiments, as well as providing clear knowledge of the electronic origin of the value of the shieldings. Our study is grounded on a recently developed theoretical model of our own, by which we are able to learn about the magnetic effects of given fragments of DNA molecules on selected base pairs. We use the shieldings of the atoms of a central base pair (guanine-cytosine) of a selected fragment of DNA molecules as descriptors of physical effects, like π-stacking and solvent effects. They can be taken separately and altogether. The effect of π-stacking is introduced through the addition of some pairs above and below of the central base pair, and now, the solvent effect is considered including a network of water molecules that consist of two solvation layers, which were fixed in the calculations performed in all fragments. We show that the solvent effects enhance the stacking effects on the magnetic shieldings of atoms that belong to the external N-H bonds. The net effect is of deshielding on both atoms. There is also a deshielding effect on the carbon atoms that belong to CO bonds, for which the oxygen atom has an explicit hydrogen bond (HB) with a solvent water molecule. Solvent effects are found to be no higher than a few percent of the total value of the shieldings (between 1% and 5%) for most atoms, although there are few for which such an effect can be higher. There is one nitrogen atom, the acceptor of the HB between guanine and cytosine, that is more highly shielded (around 15 ppm or 10%) when the explicit solvent is considered. In a similar manner, the most external nitrogen atom of cytosine and the hydrogen atom that is bonded to it are highly deshielded (around 10 ppm for nitrogen and around 3 ppm for hydrogen).
Collapse
Affiliation(s)
- Fernando A Martínez
- Institute of Modelling and Innovation on Technology (IMIT), CONICET-UNNE, Avda Libertad 5460, W3404AAS Corrientes, Argentina.,Chemistry Department, Natural and Exact Science Faculty, Northeastern University of Argentina, Avda Libertad 5460, W3404AAS Corrientes, Argentina
| | - Natalia S Adler
- Computational Drug Design and Biomedical Informatics Laboratory, Instituto de Investigaciones en Medicina Translacional (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina.,Centro de Investigaciones en BioNanociencias (CIBION), CONICET, Buenos Aires, Argentina
| | - Claudio N Cavasotto
- Computational Drug Design and Biomedical Informatics Laboratory, Instituto de Investigaciones en Medicina Translacional (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina.,Facultad de Ciencias Biomédicas and Facultad de Ingeniería, Universidad Austral, Pilar, Buenos Aires, Argentina.,Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Gustavo A Aucar
- Institute of Modelling and Innovation on Technology (IMIT), CONICET-UNNE, Avda Libertad 5460, W3404AAS Corrientes, Argentina.,Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina, Avda Libertad 5460, W3404AAS Corrientes, Argentina.
| |
Collapse
|
3
|
Chawla M, Gorle S, Shaikh AR, Oliva R, Cavallo L. Replacing thymine with a strongly pairing fifth Base: A combined quantum mechanics and molecular dynamics study. Comput Struct Biotechnol J 2021; 19:1312-1324. [PMID: 33738080 PMCID: PMC7940798 DOI: 10.1016/j.csbj.2021.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
The non-natural ethynylmethylpyridone C-nucleoside (W), a thymidine (T) analogue that can be incorporated in oligonucleotides by automated synthesis, has recently been reported to form a high fidelity base pair with adenosine (A) and to be well accommodated in B-DNA duplexes. The enhanced binding affinity for A of W, as compared to T, makes it an ideal modification for biotechnological applications, such as efficient probe hybridization for the parallel detection of multiple DNA strands. In order to complement the experimental study and rationalize the impact of the non-natural W nucleoside on the structure, stability and dynamics of DNA structures, we performed quantum mechanics (QM) calculations along with molecular dynamics (MD) simulations. Consistently with the experimental study, our QM calculations show that the A:W base pair has an increased stability as compared to the natural A:T pair, due to an additional CH-π interaction. Furthermore, we show that mispairing between W and guanine (G) causes a distortion in the planarity of the base pair, thus explaining the destabilization of DNA duplexes featuring a G:W pair. MD simulations show that incorporation of single or multiple consecutive A:W pairs in DNA duplexes causes minor changes to the intra- and inter-base geometrical parameters, while a moderate widening/shrinking of the major/minor groove of the duplexes is observed. QM calculations applied to selected stacks from the MD simulations also show an increased stacking energy for W, over T, with the neighboring bases.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Suresh Gorle
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abdul Rajjak Shaikh
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Hamlin TA, Poater J, Fonseca Guerra C, Bickelhaupt FM. B-DNA model systems in non-terran bio-solvents: implications for structure, stability and replication. Phys Chem Chem Phys 2017; 19:16969-16978. [DOI: 10.1039/c7cp01908d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have computationally analyzed a comprehensive series of Watson–Crick and mismatched B-DNA base pairs, in the gas phase and in several solvents, including toluene, chloroform, ammonia, methanol and water, using dispersion-corrected density functional theory and implicit solvation.
Collapse
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)
- Vrije Universiteit Amsterdam
- NL-1081 HV Amsterdam
- The Netherlands
| | - Jordi Poater
- Departament de Química Inorgànica i Orgánica & Institut de Química Teòrica i Computacional (IQTCUB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- ICREA
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)
- Vrije Universiteit Amsterdam
- NL-1081 HV Amsterdam
- The Netherlands
- Leiden Institute of Chemistry
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)
- Vrije Universiteit Amsterdam
- NL-1081 HV Amsterdam
- The Netherlands
- Institute of Molecules and Materials
| |
Collapse
|