1
|
Pathak H, Panyala A, Peng B, Bauman NP, Mutlu E, Rehr JJ, Vila FD, Kowalski K. Real-Time Equation-of-Motion Coupled-Cluster Cumulant Green's Function Method: Heterogeneous Parallel Implementation Based on the Tensor Algebra for Many-Body Methods Infrastructure. J Chem Theory Comput 2023; 19:2248-2257. [PMID: 37096369 DOI: 10.1021/acs.jctc.3c00045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
We report the implementation of the real-time equation-of-motion coupled-cluster (RT-EOM-CC) cumulant Green's function method [ J. Chem. Phys. 2020, 152, 174113] within the Tensor Algebra for Many-body Methods (TAMM) infrastructure. TAMM is a massively parallel heterogeneous tensor library designed for utilizing forthcoming exascale computing resources. The two-body electron repulsion matrix elements are Cholesky-decomposed, and we imposed spin-explicit forms of the various operators when evaluating the tensor contractions. Unlike our previous real algebra Tensor Contraction Engine (TCE) implementation, the TAMM implementation supports fully complex algebra. The RT-EOM-CC singles (S) and doubles (D) time-dependent amplitudes are propagated using a first-order Adams-Moulton method. This new implementation shows excellent scalability tested up to 500 GPUs using the Zn-porphyrin molecule with 655 basis functions, with parallel efficiencies above 90% up to 400 GPUs. The TAMM RT-EOM-CCSD was used to study core photoemission spectra in the formaldehyde and ethyl trifluoroacetate (ESCA) molecules. Simulations of the latter involve as many as 71 occupied and 649 virtual orbitals. The relative quasiparticle ionization energies and overall spectral functions agree well with available experimental results.
Collapse
Affiliation(s)
- Himadri Pathak
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ajay Panyala
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Bo Peng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Nicholas P Bauman
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Erdal Mutlu
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - John J Rehr
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Karol Kowalski
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
2
|
Pototschnig JV, Papadopoulos A, Lyakh DI, Repisky M, Halbert L, Severo Pereira Gomes A, Jensen HJA, Visscher L. Implementation of Relativistic Coupled Cluster Theory for Massively Parallel GPU-Accelerated Computing Architectures. J Chem Theory Comput 2021; 17:5509-5529. [PMID: 34370471 PMCID: PMC8444343 DOI: 10.1021/acs.jctc.1c00260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we report reimplementation of the core algorithms of relativistic coupled cluster theory aimed at modern heterogeneous high-performance computational infrastructures. The code is designed for parallel execution on many compute nodes with optional GPU coprocessing, accomplished via the new ExaTENSOR back end. The resulting ExaCorr module is primarily intended for calculations of molecules with one or more heavy elements, as relativistic effects on the electronic structure are included from the outset. In the current work, we thereby focus on exact two-component methods and demonstrate the accuracy and performance of the software. The module can be used as a stand-alone program requiring a set of molecular orbital coefficients as the starting point, but it is also interfaced to the DIRAC program that can be used to generate these. We therefore also briefly discuss an improvement of the parallel computing aspects of the relativistic self-consistent field algorithm of the DIRAC program.
Collapse
Affiliation(s)
- Johann V Pototschnig
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Anastasios Papadopoulos
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Dmitry I Lyakh
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Loïc Halbert
- Universite de Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molecules, F-59000 Lille, France
| | - André Severo Pereira Gomes
- Universite de Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molecules, F-59000 Lille, France
| | - Hans Jørgen Aa Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Lucas Visscher
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Garniron Y, Applencourt T, Gasperich K, Benali A, Ferté A, Paquier J, Pradines B, Assaraf R, Reinhardt P, Toulouse J, Barbaresco P, Renon N, David G, Malrieu JP, Véril M, Caffarel M, Loos PF, Giner E, Scemama A. Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs. J Chem Theory Comput 2019; 15:3591-3609. [DOI: 10.1021/acs.jctc.9b00176] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yann Garniron
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS,
UPS, Toulouse, France
| | - Thomas Applencourt
- Computational Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Kevin Gasperich
- Computational Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anouar Benali
- Computational Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Anthony Ferté
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
| | - Julien Paquier
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
| | - Barthélémy Pradines
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
- Institut des Sciences du Calcul et des Données, Sorbonne Université, F-75005 Paris, France
| | - Roland Assaraf
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
| | - Peter Reinhardt
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
| | - Julien Toulouse
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
| | - Pierrette Barbaresco
- CALMIP, Université de Toulouse, CNRS, INPT, INSA, UPS, UMS 3667, Toulouse, France
| | - Nicolas Renon
- CALMIP, Université de Toulouse, CNRS, INPT, INSA, UPS, UMS 3667, Toulouse, France
| | | | - Jean-Paul Malrieu
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS,
UPS, Toulouse, France
| | - Mickaël Véril
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS,
UPS, Toulouse, France
| | - Michel Caffarel
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS,
UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS,
UPS, Toulouse, France
| | - Emmanuel Giner
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS,
UPS, Toulouse, France
| |
Collapse
|
4
|
Pham BQ, Gordon MS. Compressing the Four-Index Two-Electron Repulsion Integral Matrix using the Resolution-of-the-Identity Approximation Combined with the Rank Factorization Approximation. J Chem Theory Comput 2019; 15:2254-2264. [DOI: 10.1021/acs.jctc.8b01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Buu Q. Pham
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Mark S. Gordon
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
5
|
Peng B, Kowalski K. Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations. J Chem Theory Comput 2017; 13:4179-4192. [DOI: 10.1021/acs.jctc.7b00605] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bo Peng
- William R. Wiley Environmental
Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P. O. Box 999, Richland, Washington 99352, United States
| | - Karol Kowalski
- William R. Wiley Environmental
Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P. O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|