1
|
Zhang Z, Nie X, Lei D, Mukamel S. Multidimensional Coherent Spectroscopy of Molecular Polaritons: Langevin Approach. PHYSICAL REVIEW LETTERS 2023; 130:103001. [PMID: 36962020 DOI: 10.1103/physrevlett.130.103001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
We present a microscopic theory for nonlinear optical spectroscopy of N molecules in an optical cavity. Using the Heisenberg-Langevin equation, an analytical expression is derived for the time- and frequency-resolved signals accounting for arbitrary numbers of vibrational excitations. We identify clear signatures of the polariton-polaron interaction from multidimensional projections of the signal, e.g., pathways and timescales. Cooperative dynamics of cavity polaritons against intramolecular vibrations is revealed, along with a crosstalk between long-range coherence and vibronic coupling that may lead to localization effects. Our results further characterize the polaritonic coherence and the population transfer that is slower.
Collapse
Affiliation(s)
- Zhedong Zhang
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Xiaoyu Nie
- School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Shaul Mukamel
- Department of Chemistry, Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
2
|
Naqvi SMZA, Zhang Y, Ahmed S, Abdulraheem MI, Hu J, Tahir MN, Raghavan V. Applied surface enhanced Raman Spectroscopy in plant hormones detection, annexation of advanced technologies: A review. Talanta 2022; 236:122823. [PMID: 34635213 DOI: 10.1016/j.talanta.2021.122823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022]
Abstract
Plant hormones are the molecules that control the vigorous development of plants and help to cope with the stress conditions efficiently due to vital and mechanized physiochemical regulations. Biologists and analytical chemists, both endorsed the extreme problems to quantify plant hormones due to their low level existence in plants and the technological support is devastatingly required to established reliable and efficient detection methods of plant hormones. Surface Enhanced Raman Spectroscopy (SERS) technology is becoming vigorously favored and can be used to accurately and specifically identify biological and chemical molecules. Subsistence molecular properties with varying excitation wavelength require the pertinent substrate to detect SERS signals from plant hormones. Three typical mechanisms of Raman signal enhancement have been discovered, electromagnetic, chemical and Tip-enhanced Raman spectroscopy (TERS). Though, complex detection samples hinder in consistent and reproducible results of SERS-based technology. However, different algorithmic models applied on preprocessed data enhanced the prediction performances of Raman spectra by many folds and decreased the fluorescence value. By incorporating SERS measurements into the microfluidic platform, further highly repeatable SERS results can be obtained. This review paper tends to study the fundamental working principles, methods, applications of SERS systems and their execution in experiments of rapid determination of plant hormones as well as several ways of integrated SERS substrates. The challenges to develop an SERS-microfluidic framework with reproducible and accurate results for plant hormone detection are discussed comprehensively and highlighted the key areas for future investigation briefly.
Collapse
Affiliation(s)
- Syed Muhammad Zaigham Abbas Naqvi
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
| | - Yanyan Zhang
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
| | - Shakeel Ahmed
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
| | - Mukhtar Iderawumi Abdulraheem
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China; Oyo State College of Education, Lanlate, 202001, Nigeria.
| | - Jiandong Hu
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
| | - Muhammad Naveed Tahir
- Department of Agronomy, PMAS-Arid Agriculture University Rawalpindi, 46300, Pakistan.
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
3
|
Zhang Z, Wang K, Yi Z, Zubairy MS, Scully MO, Mukamel S. Polariton-Assisted Cooperativity of Molecules in Microcavities Monitored by Two-Dimensional Infrared Spectroscopy. J Phys Chem Lett 2019; 10:4448-4454. [PMID: 31304758 DOI: 10.1021/acs.jpclett.9b00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular polaritons created by the strong coupling between matter and field in microcavities enable the control of molecular dynamical processes and optical response. Multidimensional infrared spectroscopy is proposed for monitoring the polariton-assisted cooperative properties. The response of molecules to local fluctuations is incorporated and the full dynamics is monitored through the time- and frequency-resolved multidimensional signal. The cooperativity against solvent-induced disorder and its connection to the localization of the vibrational excitations are predicted. New insights are provided for recent 2DIR experiments on vibrational polaritons.
Collapse
Affiliation(s)
- Zhedong Zhang
- Institute for Quantum Science and Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Kai Wang
- Institute for Quantum Science and Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Zhenhuan Yi
- Institute for Quantum Science and Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - M Suhail Zubairy
- Institute for Quantum Science and Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Marlan O Scully
- Institute for Quantum Science and Engineering , Texas A&M University , College Station , Texas 77843 , United States
- Quantum Optics Laboratory , Baylor Research and Innovation Collaborative , Waco , Texas 76704 , United States
- Department of Mechanical and Aerospace Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| | - Shaul Mukamel
- Department of Chemistry, Department of Physics and Astronomy , University of California Irvine , Irvine , California 92697 , United States
| |
Collapse
|
4
|
Ribeiro RF, Martínez-Martínez LA, Du M, Campos-Gonzalez-Angulo J, Yuen-Zhou J. Polariton chemistry: controlling molecular dynamics with optical cavities. Chem Sci 2018; 9:6325-6339. [PMID: 30310561 PMCID: PMC6115696 DOI: 10.1039/c8sc01043a] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Molecular polaritons are the optical excitations which emerge when molecular transitions interact strongly with confined electromagnetic fields. Increasing interest in the hybrid molecular-photonic materials that host these excitations stems from recent observations of their novel and tunable chemistry. Some of the remarkable functionalities exhibited by polaritons include the ability to induce long-range excitation energy transfer, enhance charge conductivity, and inhibit or accelerate chemical reactions. In this review, we explain the effective theories of molecular polaritons which form a basis for the interpretation and guidance of experiments at the strong coupling limit. The theoretical discussion is illustrated with the analysis of innovative applications of strongly coupled molecular-photonic systems to chemical phenomena of fundamental importance to future technologies.
Collapse
Affiliation(s)
- Raphael F Ribeiro
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , USA .
| | - Luis A Martínez-Martínez
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , USA .
| | - Matthew Du
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , USA .
| | - Jorge Campos-Gonzalez-Angulo
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , USA .
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , USA .
| |
Collapse
|