1
|
Crociani L. Metal-Free Graphene-Based Derivatives as Oxygen Reduction Reaction Electrocatalysts in Energy Conversion and Storage Systems: An Overview. Molecules 2025; 30:2248. [PMID: 40430420 DOI: 10.3390/molecules30102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Oxygen reduction reaction (ORR) is one of the most important reactions in electrochemical energy storage and conversion devices. To overcome the slow kinetics, minimize the overpotential, and make this reaction feasible, efficient, and stable, electrocatalysts are needed. Metal-free graphene-based systems are considered promising and cost-effective ORR catalysts with adjustable structures. This review is meant to give a rational overview of the graphene-based metal-free ORR electrocatalysts, illustrating the huge amount of related research developed particularly in the field of fuel cells and metal-air batteries, with particular attention to the synthesis procedures. The novelty of this review is that, beyond general aspects regarding the synthesis and characterization of graphene, above 90% of the various graphene (doped and undoped species, composites)-based ORR electrocatalysts have been reported, which represents an unprecedented thorough collection of both experimental and theoretical studies. Hundreds of references are included in the review; therefore, it can be considered as a vademecum in the field.
Collapse
Affiliation(s)
- Laura Crociani
- Institute of Condensed Matter Chemistry and Technologies for Energy, ICMATE, National Research Council of Italy, CNR, Corso Stati Uniti, 4, 35127 Padua, Italy
| |
Collapse
|
2
|
Denis PA. Heteroatom Codoped Graphene: The Importance of Nitrogen. ACS OMEGA 2022; 7:45935-45961. [PMID: 36570263 PMCID: PMC9773818 DOI: 10.1021/acsomega.2c06010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Although graphene has exceptional properties, they are not enough to solve the extensive list of pressing world problems. The substitutional doping of graphene using heteroatoms is one of the preferred methods to adjust the physicochemical properties of graphene. Much effort has been made to dope graphene using a single dopant. However, in recent years, substantial efforts have been made to dope graphene using two or more dopants. This review summarizes all the hard work done to synthesize, characterize, and develop new technologies using codoped, tridoped, and quaternary doped graphene. First, I discuss a simple question that has a complicated answer: When can an atom be considered a dopant? Then, I briefly discuss the single atom doped graphene as a starting point for this review's primary objective: codoped or dual-doped graphene. I extend the discussion to include tridoped and quaternary doped graphene. I review most of the systems that have been synthesized or studied theoretically and the areas in which they have been used to develop new technologies. Finally, I discuss the challenges and prospects that will shape the future of this fascinating field. It will be shown that most of the graphene systems that have been reported involve the use of nitrogen, and much effort is needed to develop codoped graphene systems that do not rely on the stabilizing effects of nitrogen. I expect that this review will contribute to introducing more researchers to this fascinating field and enlarge the list of codoped graphene systems that have been synthesized.
Collapse
|
3
|
Posudievsky OY, Kondratyuk AS, Kozarenko OA, Cherepanov VV, Karbivskiy VL, Koshechko VG, Pokhodenko VD. Boosting graphene electrocatalytic efficiency in oxygen reduction reaction by mechanochemically induced low-temperature nitrogen doping. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Immanuel S, Ahmad Dar M, Sivasubramanian R, Rezaul Karim M, Kim DW, Gul R. Progress and Prospects on the Fabrication of Graphene-Based Nanostructures for Energy Storage, Energy Conversion and Biomedical Applications. Chem Asian J 2021; 16:1365-1381. [PMID: 33899344 DOI: 10.1002/asia.202100216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Indexed: 11/10/2022]
Abstract
Graphene, a two-dimensional (2D) layered material has attracted much attention from the scientific community due to its exceptional electrical, thermal, mechanical, biological and optical properties. Hence, numerous applications utilizing graphene-based materials could be conceived in next-generation electronics, chemical and biological sensing, energy conversion and storage, and beyond. The interaction between graphene surfaces with other materials plays a vital role in influencing its properties than other bulk materials. In this review, we outline the recent progress in the production of graphene and related 2D materials, and their uses in energy conversion (solar cells, fuel cells), energy storage (batteries, supercapacitors) and biomedical applications.
Collapse
Affiliation(s)
- Susan Immanuel
- Electrochemical sensors and energy materials laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641004, India
| | - Mushtaq Ahmad Dar
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421, Saudi Arabia
| | - R Sivasubramanian
- Electrochemical sensors and energy materials laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641004, India
| | - Mohammad Rezaul Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421, Saudi Arabia.,K.A. CARE Energy Research and Innovation Center, Riyadh, 11451, Saudi Arabia
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Rukshana Gul
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh, 11461, Saudi Arabia
| |
Collapse
|
5
|
Zhu W, Gao J, Song H, Lin X, Zhang S. Nature of the Synergistic Effect of N and S Co-Doped Graphene for the Enhanced Simultaneous Determination of Toxic Pollutants. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44545-44555. [PMID: 31675208 DOI: 10.1021/acsami.9b13211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
N-doped graphene (NG), S-doped graphene (SG), and N and S co-doped graphene nanocatalysts with different doping sequences (N-SG and S-NG) are successfully synthesized by a facile low-temperature hydrothermal method. By changing the synthetic sequence, S-NG significantly increases the electron transport rate of the sensor and the electrocatalytic ability compared to NG, SG, and N-SG due to the optimal proportion of doping element content and suitable N- and S-bonding configurations. The origin of the synergistic effect of N and S co-doped graphene is confirmed. Traces of S doping greatly enhance the electrochemical performance. The large volume of S-Ox groups may prevent the analytes from approaching the catalytic sites of the sensing materials due to a steric hindrance effect. S-NG, which possesses less S-Ox groups, exhibits better performance than N-SG. Pyridinic N plays an important role in enhancing the electrochemical activity and conductivity. The simultaneous determination of aniline (AN), p-phenylenediamine (PPD), and nitrobenzene (NB) as typical toxic pollutants is performed by employing the S-NG nanoarchitecture. The detection limits (S/N = 3) for AN, PPD, and NB are 0.023, 0.051, and 0.216 μM, respectively. In addition, the S-NG sensors also have excellent anti-interference, stability, and reproducibility. The precise control and synthesis of multiheteroatoms into graphene represent a promising strategy to enhance the electrocatalytic performance in energy and environmental fields.
Collapse
Affiliation(s)
- Weiqing Zhu
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Juanjuan Gao
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Haiou Song
- School of Environment , Nanjing Normal University , Nanjing 210097 , P. R. China
| | - Xuezhen Lin
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Shupeng Zhang
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| |
Collapse
|
6
|
Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z. Carbon-Based Metal-Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804799. [PMID: 30637835 DOI: 10.1002/adma.201804799] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/07/2018] [Indexed: 06/09/2023]
Abstract
Replacing precious platinum with earth-abundant materials for the oxygen reduction reaction (ORR) in fuel cells has been the objective worldwide for several decades. In the last 10 years, the fastest-growing branch in this area has been carbon-based metal-free ORR electrocatalysts. Great progress has been made in promoting the performance and understanding the underlying fundamentals. Here, a comprehensive review of this field is presented by emphasizing the emerging issues including the predictive design and controllable construction of porous structures and doping configurations, mechanistic understanding from the model catalysts, integrated experimental and theoretical studies, and performance evaluation in full cells. Centering on these topics, the most up-to-date results are presented, along with remarks and perspectives for the future development of carbon-based metal-free ORR electrocatalysts.
Collapse
Affiliation(s)
- Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing, 100083, China
| | - Lei Du
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yuyan Shao
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jun Liu
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Liming Dai
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Guo H, Gao R, Sun M, Guo H, Wang B, Chen L. Cobalt Entrapped in N,S-Codoped Porous Carbon: Catalysts for Transfer Hydrogenation with Formic Acid. CHEMSUSCHEM 2019; 12:487-494. [PMID: 30350471 DOI: 10.1002/cssc.201802392] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Catalysts with Co nanoparticles (NPs) entrapped in N,S-codoped carbon shells were successfully fabricated by pyrolysis of porous organic polymers (POPs) with cobalt salts. The encapsulated structure consisting of Co NPs and N,S-codoped carbon layers was verified by TEM, XRD, and X-ray photoelectron spectroscopy. The catalysts displayed excellent activity and stability for the catalytic transfer hydrogenation (CTH) of nitrobenzene with formic acid under base-free conditions. Furthermore, the resultant catalysts allowed for highly efficient and selective transfer hydrogenation of various functionalized nitroarenes to the corresponding anilines. Through control experiments, the covered Co NPs were identified as active sites for CTH. The incorporation of S into the N-doped carbon lattice promoted the electron transfer from metallic cobalt NPs to their shells, which played a significant role in the acceleration of CTH. Moreover, the Co-NSPC-850 catalyst pyrolyzed at 850 °C showed excellent stability in the recycling experiments.
Collapse
Affiliation(s)
- Haotian Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Ruixiao Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Mingming Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Hao Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, P. R. China
| |
Collapse
|
8
|
|
9
|
Heteroatom (Nitrogen/Sulfur)-Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction and Evolution Reactions. Catalysts 2018. [DOI: 10.3390/catal8100475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Carbon nanomaterials are potential materials with their intrinsic structure and property in energy conversion and storage. As the electrocatalysts, graphene is more remarkable in electrochemical reactions. Additionally, heteroatoms doping with metal-free materials can obtain unique structure and demonstrate excellent electrocatalytic performance. In this work, we proposed a facile method to prepare bifunctional electrocatalyst which was constructed by nitrogen, sulfur doped graphene (NSG), which demonstrate superior properties with high activity and excellent durability compared with Pt/C and IrO2 for oxygen reduction (OR) and oxygen evolution (OE) reactions. Accordingly, these phenomena are closely related to the synergistic effect of doping with nitrogen and sulfur by rationally regulating the polarity of carbon in graphene. The current work expands the method towards carbon materials with heteroatom dopants for commercialization in energy-related reactions.
Collapse
|
10
|
Wang S, Teng Z, Wang C, Wang G. Stable and Efficient Nitrogen-Containing Carbon-Based Electrocatalysts for Reactions in Energy-Conversion Systems. CHEMSUSCHEM 2018; 11:2267-2295. [PMID: 29770593 DOI: 10.1002/cssc.201800509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/21/2018] [Indexed: 05/14/2023]
Abstract
High activity and stability are crucial for the practical use of electrocatalysts in fuel cells, metal-air batteries, and water electrolysis, including the oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, and oxidation reactions of formic acid and alcohols. Electrocatalysts based on nitrogen-containing carbon (N-C) materials show promise in catalyzing these reactions; however, there is no systematic review of strategies for the engineering of active and stable N-C-based electrocatalysts. Herein, a comprehensive comparison of recently reported N-C-based electrocatalysts regarding both electrocatalytic activity and long-term stability is presented. In the first part of this review, the relationships between the electrocatalytic reactions and selection of the element to modify the N-C-based materials are discussed. Afterwards, synthesis methods for N-C-based electrocatalysts are summarized, and strategies for the synthesis of highly stable N-C-based electrocatalysts are presented. Multiple tables containing data on crucial parameters for both electrocatalytic activity and stability are displayed in this review. Finally, constructing M-Nx moieties is proposed as the most promising engineering strategy for stable N-C-based electrocatalysts.
Collapse
Affiliation(s)
- Sicong Wang
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, PR China
| | - Zhengyuan Teng
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, PR China
| | - Chengyin Wang
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, PR China
| | - Guoxiu Wang
- Center for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| |
Collapse
|
11
|
Liu S, Li G, Gao Y, Xiao Z, Zhang J, Wang Q, Zhang X, Wang L. Doping carbon nanotubes with N, S, and B for electrocatalytic oxygen reduction: a systematic investigation on single, double, and triple doped modes. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00491e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polydopamine-coated MWCNTs have been employed as reactive platforms for the anchoring of multiple heteroatom dopants.
Collapse
Affiliation(s)
- Sen Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yuying Gao
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Zhourong Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Junfeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qingfa Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|