1
|
Huang H, Peng J, Zhang Y, Gu FL, Lan Z, Xu C. The development of the QM/MM interface and its application for the on-the-fly QM/MM nonadiabatic dynamics in JADE package: Theory, implementation, and applications. J Chem Phys 2024; 160:234101. [PMID: 38884395 DOI: 10.1063/5.0215036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Understanding the nonadiabatic dynamics of complex systems is a challenging task in computational photochemistry. Herein, we present an efficient and user-friendly quantum mechanics/molecular mechanics (QM/MM) interface to run on-the-fly nonadiabatic dynamics. Currently, this interface consists of an independent set of codes designed for general-purpose use. Herein, we demonstrate the ability and feasibility of the QM/MM interface by integrating it with our long-term developed JADE package. Tailored to handle nonadiabatic processes in various complex systems, especially condensed phases and protein environments, we delve into the theories, implementations, and applications of on-the-fly QM/MM nonadiabatic dynamics. The QM/MM approach is established within the framework of the additive QM/MM scheme, employing electrostatic embedding, link-atom inclusion, and charge-redistribution schemes to treat the QM/MM boundary. Trajectory surface-hopping dynamics are facilitated using the fewest switches algorithm, encompassing classical and quantum treatments for nuclear and electronic motions, respectively. Finally, we report simulations of nonadiabatic dynamics for two typical systems: azomethane in water and the retinal chromophore PSB3 in a protein environment. Our results not only illustrate the power of the QM/MM program but also reveal the important roles of environmental factors in nonadiabatic processes.
Collapse
Affiliation(s)
- Haiyi Huang
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- MOE Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yulin Zhang
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
2
|
Barneschi L, Kaliakin D, Huix-Rotllant M, Ferré N, Filatov Gulak M, Olivucci M. Assessment of the Electron Correlation Treatment on the Quantum-Classical Dynamics of Retinal Protonated Schiff Base Models: XMS-CASPT2, RMS-CASPT2, and REKS Methods. J Chem Theory Comput 2023; 19:8189-8200. [PMID: 37937990 DOI: 10.1021/acs.jctc.3c00879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We compare the performance of three different multiconfigurational wave function-based electronic structure methods and two implementations of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method. The study is characterized by three features: (i) it uses a small set of quantum-classical trajectories rather than potential energy surface mapping, (ii) it focuses, exclusively, on the photoisomerization of retinal protonated Schiff base models, and (iii) it probes the effect of both methyl substitution and the increase in length of the conjugate π-system. For each tested method, the corresponding analytical gradients are used to drive the quantum-classical (Tully's FSSH method) trajectory propagation, including the recent multistate XMS-CASPT2 and RMS-CASPT2 gradients. It is shown that while CASSCF, XMS-CASPT2, and RMS-CASPT2 yield consistent photoisomerization dynamics descriptions, REKS produces, in some of these systems, qualitatively different behavior that is attributed to a flatter and topographically different excited state potential energy surface. The origin of this behavior can be traced back to the effect of the employed density functional approximation. The above studies are further expanded by benchmarking, at the CASSCF and REKS levels, the electronic structure methods using a QM/MM model of the visual pigment rhodopsin.
Collapse
Affiliation(s)
- Leonardo Barneschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, I-53100 Siena, Italy
| | - Danil Kaliakin
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Miquel Huix-Rotllant
- Aix-Marseille Université, CNRS, Institut Chimie Radicalaire, 13013 Marseille, France
| | - Nicolas Ferré
- Aix-Marseille Université, CNRS, Institut Chimie Radicalaire, 13013 Marseille, France
| | - Michael Filatov Gulak
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, I-53100 Siena, Italy
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
3
|
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Northwestern University , Evanston, IL, USA
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University , Evanston, IL, USA
| |
Collapse
|