1
|
Li X, Wang J, Xia J, Fang Y, Hou Y, Fu X, Shalom M, Wang X. One-Pot Synthesis of CoS 2 Merged in Polymeric Carbon Nitride Films for Photoelectrochemical Water Splitting. CHEMSUSCHEM 2022; 15:e202200330. [PMID: 35212173 DOI: 10.1002/cssc.202200330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Polymeric carbon nitride (PCN) has attracted intensive interest as sustainable, metal-free semiconductor for photoelectrochemical (PEC) water splitting. Charge transfer along the films acts as the main concern to restrict the performance due to the amorphous nature of polymer. Herein, gradient concentration of cobalt disulfide (CoS2 ) merged in PCN films was realized as CSCN photoanode by a one-pot synthesis. Owing to the unique properties of CoS2 , namely high conductivity, the charge transfer of the CSCN photoanode was promoted, and thus the performance for PEC water oxidation was improved. The optimal photoanode exhibited a photoanodic current of 200 μA cm-2 at 1.23 V versus reversible hydrogen electrode under air mass 1.5 global (AM 1.5G) illumination, which was approximately 4 times that of the pristine PCN photoanode. This work provides a new design of metal-free photoanodes to improve the performance of water splitting.
Collapse
Affiliation(s)
- Xiaochun Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jiawen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jiawei Xia
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
2
|
Electrochemical and electrical response of bismuth-aniline complex under the exposure of organic and inorganic environment. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03802-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
3
|
Mukhtar I, Ali S, Jamil S, urRehman S, Rauf Khan S. Engineering of cobalt sulfide (Co5S2) microcubes for selective catalytic hydrogenation of nitroarenes and enhanced calorific value of fuel. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Ghosh SK, Perla VK, Mallick K. Organic molecule stabilized bismuth iodide nanoparticles: a hybrid system with multifunctional physical properties. Phys Chem Chem Phys 2020; 22:3345-3351. [PMID: 31976512 DOI: 10.1039/c9cp06183e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An organic-inorganic hybrid system of aniline stabilized bismuth iodide nanoparticles (ABI) was synthesized and investigated for its dielectric properties, AC-conductivity, polarization hysteresis and non-volatile memory performances. The X-ray diffraction result indicates the single phase crystalline nature of the nanoparticles and a microscopic image shows the homogeneous distribution of the bismuth iodide nanoparticles within the organic matrix. The material has exhibited a moderate dielectric performance via an interfacial polarization mechanism. The decrease in dielectric constant with frequency is correlated with the carrier concentration and diffusion potential, and the behaviour revealed that the halide ion mediated polaron migration controls the overall relaxation and conductivity properties of the material. Octahedral distortion of bismuth iodide, through halide ion migration, induced a hysteresis loop in polarization-electric field (P-E) characteristics. The device fabricated with the aniline stabilized bismuth iodide nanoparticles exhibited a space-charge limited current and trap assisted tunneling mechanism for the charge transport process. The non-volatile property reveals that the device has the ability to store binary information and has potential for memory applications.
Collapse
Affiliation(s)
- Sarit K Ghosh
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa.
| | - Venkata K Perla
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa.
| | - Kaushik Mallick
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa.
| |
Collapse
|