1
|
Palmer CZ, Firth RA, Fortenberry RC. Computing Accurate & Reliable Rovibrational Spectral Data for Aluminum-Bearing Molecules. J Comput Chem 2025; 46:e27524. [PMID: 39711372 DOI: 10.1002/jcc.27524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 09/15/2024] [Indexed: 12/24/2024]
Abstract
The difficulty of quantum chemically computing vibrational, rotational, and rovibrational reference data via quartic force fields (QFFs) for molecules containing aluminum appears to be alleviated herein using a hybrid approach based upon CCSD(T)-F12b/cc-pCVTZ further corrected for conventional CCSD(T) scalar relativity within the harmonic terms and simple CCSD(T)-F12b/cc-pVTZ for the cubic and quartic terms: the F12-TcCR+TZ QFF. Aluminum containing molecules are theorized to participate in significant chemical processes in both the Earth's upper atmosphere as well as within circumstellar and interstellar media. However, experimental data for the identification of these molecules are limited, showcasing the potential for quantum chemistry to contribute significant amounts of spectral reference data. Unfortunately, current methods for the computation of rovibrational spectral data have been shown previously to exhibit large errors for aluminum-containing molecules. In this work, ten different methods are benchmarked to determine a method to produce experimentally-accurate rovibrational data for theorized aluminum species. Of the benchmarked methods, the explicitly correlated, hybrid F12-TcCR+TZ QFF consistently produces the most accurate results compared to both gas-phase and Ar-matrix experimental data. This method combines the accuracy of the composite F12-TcCR energies along with the numerical stability of non-composite anharmonic terms where the non-rigid nature of aluminum bonding can be sufficiently treated.
Collapse
Affiliation(s)
- C Zachary Palmer
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi, USA
| | - Rebecca A Firth
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi, USA
| | - Ryan C Fortenberry
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi, USA
| |
Collapse
|
2
|
Di Grande S, Lazzari F, Barone V. Accurate Geometries of Large Molecules at DFT Cost by Semiexperimental and Coupled Cluster Templating Fragments. J Chem Theory Comput 2024; 20:9243-9258. [PMID: 39373710 DOI: 10.1021/acs.jctc.4c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Accurate geometries of small semirigid molecules in the gas phase are available thanks to high-resolution spectroscopy and accurate quantum chemical approaches. These results can be employed for validating cheaper low-level quantum chemical models or correcting the corresponding structures of large molecules. On these grounds, in this work, a large panel of semiexperimental equilibrium structures already available in the literature is used to confirm the average error (1 mÅ for bond lengths and 2 mrad for valence angles) of a version of the Pisa composite schemes (PCS2), which is applicable to molecules containing up to about 20 atoms. Then, the geometries of 30 additional medium-sized systems were optimized at the PCS2 level to cover a more balanced chemical space containing moieties poorly represented in SE compilations. The final database is available on a public domain Web site (https://www.skies-village.it/databases/) and can be employed for correcting structures of larger molecules obtained by hybrid or double-hybrid density functionals in the framework of the templating molecule approach. Several examples show that corrections based on the structures of building blocks taken from this database reduce the error of the B3LYP geometrical parameters of large molecules by nearly an order of magnitude without increasing the computational cost. Furthermore, the results of different density functional theory (DFT) or wave function (e.g., MP2) models can be improved in the same way by simply computing both the whole molecule and suitable building blocks at the chosen level. Then, whenever reference structures of some building blocks containing up to about 20 atoms are not available, they can be purposely optimized at the PCS2 level by employing reasonable computer resources. Therefore, a new DFT-cost tool is now available for the accurate characterization of large molecules by experiment-oriented scientists.
Collapse
Affiliation(s)
- Silvia Di Grande
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Federico Lazzari
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | |
Collapse
|
3
|
Flint AR, Westbrook BR, Fortenberry RC. Theoretical Rotational and Vibrational Spectral Data for the Hypermagnesium Oxide Species Mg 2O and Mg 2O . Chemphyschem 2024; 25:e202400479. [PMID: 38801234 DOI: 10.1002/cphc.202400479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/29/2024]
Abstract
While magnesium is astronomically observed in small molecules, it largely serves as a contributor to silicate grains, though how these grains form is not well-understood. The smallest hypermagnesium oxide compounds (Mg2 ${{}_{2}}$ O/Mg2 ${{}_{2}}$ O+ ${{}^{+}}$ ) may play a role in silicate formation, but little vibrational reference data exist. As such, anharmonic spectroscopic data are computed forX ˜ 1 Σ g + ${{{\tilde{\rm {X}}}}^1 {\rm{\Sigma }}_g^+ }$ Mg2 ${{}_{2}}$ O,a ˜ 1 Σ u + ${{{\tilde{\rm {a}}}}^1 {\rm{\Sigma }}_u^+ }$ Mg2 ${{}_{2}}$ O, andX ˜ 2 Σ g + ${{{\tilde{\rm {X}}}}^2 {\rm{\Sigma }}_g^+ }$ Mg2 ${{}_{2}}$ O+ ${{}^{+}}$ using quartic force fields (QFFs). Explicitly-correlated coupled-cluster QFFs for the neutral species perform well, implying that full multireference treatment may not be necessary for such systems if enough electron correlation is included. Equation-of-motion ionization potential (EOMIP) methods forX ˜ 2 Σ g + ${{{\tilde{\rm {X}}}}^2 {\rm{\Sigma }}_g^+ }$ Mg2 ${{}_{2}}$ O+ ${{}^{+}}$ QFFs circumvent previous symmetry breaking issues even in explicitly-correlated coupled-cluster results, motivating the need for EOMIP treatments at minimum for such systems. All three species are found to have high-intensity vibrational frequencies. Even so, the highly intense frequency (X ˜ 1 Σ g + ${{{\tilde{\rm {X}}}}^1 {\rm{\Sigma }}_g^+ }$ Mg2 ${{}_{2}}$ O: 894.7 cm-1/11.18 μm;a ˜ 1 Σ u + ${{{\tilde{\rm {a}}}}^1 {\rm{\Sigma }}_u^+ }$ Mg2 ${{}_{2}}$ O: 915.0 cm-1/10.91 μm) for either neutral state may be astronomically obscured by the polycyclic aromatic hydrocarbon 11.2 μm band. Mg2 ${{}_{2}}$ O+ ${{}^{+}}$ may be less susceptible to such obfuscation, and itsν 1 ${{\nu }_{1}}$ intensity is computed to be a massive 4793 km mol-1.
Collapse
Affiliation(s)
- Athena R Flint
- Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38655, USA
| | - Brent R Westbrook
- The Open Force Field Initiative, Open Molecular Software Foundation, Davis, CA 95616, USA
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38655, USA
| |
Collapse
|
4
|
Xu R, Jiang Z, Yang Q, Bloino J, Biczysko M. Harmonic and anharmonic vibrational computations for biomolecular building blocks: Benchmarking DFT and basis sets by theoretical and experimental IR spectrum of glycine conformers. J Comput Chem 2024; 45:1846-1869. [PMID: 38682874 DOI: 10.1002/jcc.27377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Advanced vibrational spectroscopic experiments have reached a level of sophistication that can only be matched by numerical simulations in order to provide an unequivocal analysis, a crucial step to understand the structure-function relationship of biomolecules. While density functional theory (DFT) has become the standard method when targeting medium-size or larger systems, the problem of its reliability and accuracy are well-known and have been abundantly documented. To establish a reliable computational protocol, especially when accuracy is critical, a tailored benchmark is usually required. This is generally done over a short list of known candidates, with the basis set often fixed a priori. In this work, we present a systematic study of the performance of DFT-based hybrid and double-hybrid functionals in the prediction of vibrational energies and infrared intensities at the harmonic level and beyond, considering anharmonic effects through vibrational perturbation theory at the second order. The study is performed for the six-lowest energy glycine conformers, utilizing available "state-of-the-art" accurate theoretical and experimental data as reference. Focusing on the most intense fundamental vibrations in the mid-infrared range of glycine conformers, the role of the basis sets is also investigated considering the balance between computational cost and accuracy. Targeting larger systems, a broad range of hybrid schemes with different computational costs is also tested.
Collapse
Affiliation(s)
- Ruiqin Xu
- Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| | | | - Qin Yang
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czechia
| | - Julien Bloino
- Classe di Scienze, Scuola Normale Superiore, Pisa, Italy
| | - Malgorzata Biczysko
- Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Fortenberry RC. Picking up Good Vibrations through Quartic Force Fields and Vibrational Perturbation Theory. J Phys Chem Lett 2024; 15:6528-6537. [PMID: 38875074 DOI: 10.1021/acs.jpclett.4c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Quartic force fields (QFFs) define sparse potential energy surfaces (compared to semiglobal surfaces) that are the cheapest and easiest means of computing anharmonic vibrational frequencies, especially when utilized with second-order vibrational perturbation theory (VPT2). However, flat and shallow potential surfaces are exceedingly difficult for QFFs to treat through a combination of numerical noise in the often numerically computed derivatives and in competing energy factors in the composite energies often utilized to provide high-level spectroscopic predictions. While some of these issues can be alleviated with analytic derivatives, hybrid QFFs, and intelligent choices in coordinate systems, the best practice is for predicting good molecular vibrations via QFFs is to understand what they cannot do, and this manuscript documents such cases where QFFs may fail.
Collapse
Affiliation(s)
- Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|
6
|
Garrett NR, Davis MC, Fortenberry RC. DFT + F12 QFFs for Cost-Effective Rovibrational Spectral Data Predictions of Ground and Excited Electronic States. J Chem Theory Comput 2024. [PMID: 38230913 DOI: 10.1021/acs.jctc.3c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The quest for faster computation of anharmonic vibrational frequencies of both ground and excited electronic states has led to combining coupled cluster theory harmonic force constants with density functional theory cubic and quartic force constants for defining a quartic force field (QFF) utilized in conjunction with vibrational perturbation theory at second order (VPT2). This work shows that explicitly correlated coupled cluster theory at the singles, doubles, and perturbative triples levels [CCSD(T)-F12] provides accurate anharmonic vibrational frequencies and rotational constants when conjoined with any of B3LYP, CAM-B3LYP, BHandHLYP, PBE0, and ωB97XD for roughly one-quarter of the computational time of the CCSD(T)-F12 QFF alone for our test set. As the number of atoms in the molecule increases, however, the anharmonic terms become a greater portion of the QFF, and the cost comparison improves with HOCO+ and formic acid, requiring less than 15 and 10% of the time, respectively. In electronically excited states, PBE0 produces more consistently accurate results. Additionally, as the size of the molecule and, in turn, QFF increase, the cost savings for utilizing such a hybrid approach for both ground- and excited-state computations grows. As such, these methods are promising for predicting accurate rovibrational spectral properties for electronically excited states. In cases where well-behaved potentials for a small selection of targeted excited states are needed, such an approach should reduce the computational cost compared to that of methods requiring semiglobal potential surfaces or variational treatments of the rovibronic Hamiltonian. Such applications include spectral characterization of comets, exoplanets, or any situation in which gas phase molecules are being excited by UV-vis radiation.
Collapse
Affiliation(s)
- Noah R Garrett
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Megan C Davis
- Theoretical Division, T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|
7
|
Esposito VJ, Palmer CZ, Fortenberry RC, Francisco JS. Spectroscopy and Photochemistry of OAlNO and Implications for New Metal Chemistry in the Atmosphere. J Phys Chem A 2023; 127:7618-7629. [PMID: 37647609 DOI: 10.1021/acs.jpca.3c04437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A new aluminum-bearing species, OAlNO, which has the potential to impact the chemistry of the Earth's upper atmosphere, is characterized via high-level, ab initio, spectroscopic methods. Meteor-ablated aluminum atoms are quickly oxidized to aluminum oxide (AlO) in the mesosphere and lower thermosphere (MLT), where a steady-state layer of AlO then builds up. Concurrent formation of nitric oxide (NO) in the same region of the atmosphere will lead to the bimolecular formation of the OAlNO molecule. Molecular orbital analysis provides fundamental insights into the chemical bonding and energetic arrangement of the triplet (1 3A″) ground state and singlet (1 1A') excited-state species of OAlNO. Additionally, unpaired electrons on the terminal oxygen atom of triplet (1 3A″) OAlNO cause it to be reactive to atmospheric species, potentially impacting climate science and high-altitude chemistry. The triplet (1 3A″) ground-state species exhibits a large permanent dipole moment useful for rotational spectroscopic detection; however, similar rotational constants to the singlet (1 1A') excited-state species will hamper differentiation in a spectrum. Strong infrared intensities will assist in detection and discrimination of the different spin states and isomers. Repulsive electronic excited states of OAlNO will lead to photolysis of the Al-N bond and formation of various electronic states of AlO + NO through nonadiabatic pathways. Reaction through the OAlNO intermediate represents a means for the production of electronically excited AlO, leading to new chemistry in the atmosphere. Excitation to higher-lying electronic states will lead to fluorescence with a minor Stokes shift, useful for laboratory investigation. Such physical properties of this molecule will allow for new, unexplored chemical pathways in the MLT to be considered.
Collapse
Affiliation(s)
- Vincent J Esposito
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - C Zachary Palmer
- Department of Chemistry and Biochemistry, University of Mississippi, University Park, Mississippi 38677-1848, United States
| | - Ryan C Fortenberry
- Department of Chemistry and Biochemistry, University of Mississippi, University Park, Mississippi 38677-1848, United States
| | - Joseph S Francisco
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| |
Collapse
|
8
|
Nelson PM, Glick ZL, Sherrill CD. Approximating large-basis coupled-cluster theory vibrational frequencies using focal-point approximations. J Chem Phys 2023; 159:094104. [PMID: 37655773 DOI: 10.1063/5.0168608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
The focal-point approximation can be used to estimate a high-accuracy, slow quantum chemistry computation by combining several lower-accuracy, faster computations. We examine the performance of focal-point methods by combining second-order Møller-Plesset perturbation theory (MP2) with coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] for the calculation of harmonic frequencies and that of fundamental frequencies using second-order vibrational perturbation theory (VPT2). In contrast to standard CCSD(T), the focal-point CCSD(T) method approaches the complete basis set (CBS) limit with only triple-ζ basis sets for the coupled-cluster portion of the computation. The predicted harmonic and fundamental frequencies were compared with the experimental values for a set of 20 molecules containing up to six atoms. The focal-point method combining CCSD(T)/aug-cc-pV(T + d)Z with CBS-extrapolated MP2 has mean absolute errors vs experiment of only 7.3 cm-1 for the fundamental frequencies, which are essentially the same as the mean absolute error for CCSD(T) extrapolated to the CBS limit using the aug-cc-pV(Q + d)Z and aug-cc-pV(5 + d)Z basis sets. However, for H2O, the focal-point procedure requires only 3% of the computation time as the extrapolated CCSD(T) result, and the cost savings will grow for larger molecules.
Collapse
Affiliation(s)
- Philip M Nelson
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Zachary L Glick
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
9
|
Sharma D, Roy TK. Accuracy of Different Electronic Basis Set Families for Anharmonic Molecular Vibrations: A Comprehensive Benchmark Study. J Phys Chem A 2023; 127:7132-7147. [PMID: 37603414 DOI: 10.1021/acs.jpca.3c02874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
In this work, the accuracy and convergence of different electronic basis set families for the computation of anharmonic molecular vibrational spectroscopic calculations are benchmarked. A series of 39 different basis sets from different families following their hierarchy are assessed on VSCF and VSCF-PT2 algorithms with commonly used MP2 and DFT based B3LYP-D potentials for a set of molecular systems. Such an effort has been validated in a previous work ( J. Phys. Chem. A 2020, 124, 9203-9221) with split-valence basis sets for fundamentals and intensities. Here, fundamental transitions, vibrationally excited states, and intensities are compared with the experimental data to estimate the accuracy for a series of Jensen, Dunning, Calendar, Karlsruhe, and Sapporo basis set families. The convergence of basis sets are also compared with the large ANO basis set. Comprehensive statistical error analysis in terms of accuracy and precision was carried out to assess the performance of each basis set. It is observed that the improvement for the calculated harmonic and anharmonic values from the smaller basis sets to the medium (i.e., triple-ξ) is considerable. Beyond this, from medium to large basis sets, the convergence is slow and mostly posits nearly converged values. Basis sets with and without diffuse functions offer characteristically different accuracies and convergence patterns. Finally, recommendations are given on the choice of basis set chosen as black-box which can balance between accuracy and computational time, estimation of the errors, and their selections especially for large molecules.
Collapse
Affiliation(s)
- Dhiksha Sharma
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Jammu, J&K 181143 India
| | - Tapta Kanchan Roy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Jammu, J&K 181143 India
| |
Collapse
|
10
|
Davis MC, Garrett NR, Fortenberry RC. F12+EOM Quartic Force Fields for Rovibrational Predictions of Electronically Excited States. J Phys Chem A 2023. [PMID: 37235692 DOI: 10.1021/acs.jpca.3c00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Quartic force fields (QFFs) constructed using a sum of ground-state CCSD(T)-F12b energies with EOM-CCSD excitation energies are proposed for computation of spectroscopic properties of electronically excited states. This is dubbed the F12+EOM approach and is shown to provide similar accuracy to previous methodologies at lower computational cost. Using explicitly correlated F12 approaches instead of canonical CCSD(T), as in the corresponding (T)+EOM approach, allows for 70-fold improvement in computational time. The mean percent difference between the two methods for anharmonic vibrational frequencies is only 0.10%. A similar approach is also developed herein which accounts for core correlation and scalar relativistic effects, named F12cCR+EOM. The F12+EOM and F12cCR+EOM approaches both match to within 2.5% mean absolute error of experimental fundamental frequencies. These new methods should help in clarifying astronomical spectra by assigning features to vibronic and vibrational transitions of small astromolecules when such data are not available experimentally.
Collapse
Affiliation(s)
- Megan C Davis
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Noah R Garrett
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|
11
|
Abstract
pbqff is an open-source program for fully automating the production of quartic force fields (QFFs) and their corresponding anharmonic spectroscopic data. Rather than being a monolithic piece of code, it consists of several key modules including a generic interface to quantum chemistry codes and, notably, queuing systems; a molecular point group symmetry library; an internal-to-Cartesian coordinate conversion module; a module for the ordinary least-squares fitting of potential energy surfaces; and an improved second-order rotational and vibrational perturbation theory package for asymmetric and symmetric tops that handles type-1 and -2 Fermi resonances, Fermi resonance polyads, and Coriolis resonances. All of these pieces are written in Rust, a modern, safe, and performant programming language that has much to offer for scientific programming. This work introduces pbqff and its surrounding ecosystem, in addition to reporting new anharmonic vibrational data for c-(C)C3H2 and describing how the components of pbqff can be leveraged in other projects.
Collapse
Affiliation(s)
- Brent R Westbrook
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|
12
|
Complete, Theoretical Rovibronic Spectral Characterization of the Carbon Monoxide, Water, and Formaldehyde Cations. Molecules 2023; 28:molecules28041782. [PMID: 36838769 PMCID: PMC9964158 DOI: 10.3390/molecules28041782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
New high-level ab initio quartic force field (QFF) methods are explored which provide spectroscopic data for the electronically excited states of the carbon monoxide, water, and formaldehyde cations, sentinel species for expanded, recent cometary spectral analysis. QFFs based on equation-of-motion ionization potential (EOM-IP) with a complete basis set extrapolation and core correlation corrections provide assignment for the fundamental vibrational frequencies of the A˜2B1 and B˜2A1 states of the formaldehyde cation; only three of these frequencies have experimental assignment available. Rotational constants corresponding to these vibrational excitations are also provided for the first time for all electronically excited states of both of these molecules. EOM-IP-CCSDT/CcC computations support tentative re-assignment of the ν1 and ν3 frequencies of the B˜2B2 state of the water cation to approximately 2409.3 cm-1 and 1785.7 cm-1, respectively, due to significant disagreement between experimental assignment and all levels of theory computed herein, as well as work by previous authors. The EOM-IP-CCSDT/CcC QFF achieves agreement to within 12 cm-1 for the fundamental vibrational frequencies of the electronic ground state of the water cation compared to experimental values and to the high-level theoretical benchmarks for variationally-accessible states. Less costly EOM-IP based approaches are also explored using approximate triples coupled cluster methods, as well as electronically excited state QFFs based on EOM-CC3 and the previous (T)+EOM approach. The novel data, including vibrationally corrected rotational constants for all states studied herein, provided by these computations should be useful in clarifying comet evolution or other remote sensing applications in addition to fundamental spectroscopy.
Collapse
|
13
|
Agbaglo DA, Cheng Q, Fortenberry RC, Stanton JF, DeYonker NJ. Theoretical Rovibrational Spectroscopy of Magnesium Tricarbide-Multireference Character Thwarts a Full Analysis of All Isomers. J Phys Chem A 2022; 126:4132-4146. [PMID: 35758849 DOI: 10.1021/acs.jpca.2c01340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnesium tricarbide isomers are studied herein with coupled cluster theory and multireference configuration interaction to support their possible detection in astrochemical environments such as the circumstellar envelope surrounding the star IRC +10216 or in terrestrial laboratories. Magnesium-bearing species may abound in the interstellar medium (ISM), but only eight (MgNC, MgCN, HMgNC, MgC2H, MgC3N, MgC4H, MgC5N, and MgC6H) have been directly identified thus far. Several possible isomers for the related MgC3 system are explored in their singlet and triplet spin multiplicities. Overall, this work offers quantum chemical insight of rovibrational spectroscopic data for MgC3 using quartic force fields (QFFs) based on the CCSD(T) and CCSD(T)-F12 levels of theory at the complete basis set (CBS) limit. Additional corrections with small basis set CCSDT(Q) and scalar relativistic effects are also included in the analysis. Salient multireference character is found in the singlet diamond electronic state, which makes a definitive assignment of the ground state challenging. Nevertheless, coupled cluster-based composite energies and multireference configuration interaction both predict that the 1A1 diamond isomer is 1.6-2.2 kcal mol-1 lower in energy than the 3A1 diamond isomer. Furthermore, highly accurate binding energies of various isomers MgC3 are provided for comparison to photodetachment experiments. Dipole moments along with harmonic infrared intensities will guide efforts for astronomical and spectroscopic characterization.
Collapse
Affiliation(s)
- Donatus A Agbaglo
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38151, United States
| | - Qianyi Cheng
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38151, United States
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - John F Stanton
- Department of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Nathan J DeYonker
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38151, United States
| |
Collapse
|
14
|
Palmer CZ, Fortenberry RC, Francisco JS. Spectral Signatures of Hydrogen Thioperoxide (HOSH) and Hydrogen Persulfide (HSSH): Possible Molecular Sulfur Sinks in the Dense ISM. Molecules 2022; 27:3200. [PMID: 35630675 PMCID: PMC9143799 DOI: 10.3390/molecules27103200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
For decades, sulfur has remained underdetected in molecular form within the dense interstellar medium (ISM), and somewhere a molecular sulfur sink exists where it may be hiding. With the discovery of hydrogen peroxide (HOOH) in the ISM in 2011, a natural starting point may be found in sulfur-bearing analogs that are chemically similar to HOOH: hydrogen thioperoxide (HOSH) and hydrogen persulfide (HSSH). The present theoretical study couples the accuracy in the anharmonic fundamental vibrational frequencies from the explicitly correlated coupled cluster theory with the accurate rotational constants provided by canonical high-level coupled cluster theory to produce rovibrational spectra for use in the potential observation of HOSH and HSSH. The ν6 mode for HSSH at 886.1 cm-1 is within 0.2 cm-1 of the gas-phase experiment, and the B0 rotational constant for HSSH of 6979.5 MHz is within 9.0 MHz of the experimental benchmarks, implying that the unknown spectral features (such as the first overtones and combination bands) provided herein are similarly accurate. Notably, a previous experimentally-attributed 2ν1 mode, at 7041.8 cm-1, has been reassigned to the ν1+ν5 combination band based on the present work's ν1+ν5 value at 7034.3 cm-1. The most intense vibrational transitions for each molecule are the torsions, with HOSH having a more intense transition of 72 km/mol compared to HSSH's intensity of 14 km/mol. Furthermore, HOSH has a larger net dipole moment of 1.60 D compared to HSSH's 1.15 D. While HOSH may be the more likely candidate of the two for possible astronomical observation via vibrational spectroscopy due to the notable difference in their intensities, both HSSH and HOSH have large enough net dipole moments to be detectable by rotational spectroscopy to discover the role these molecules may have as possible molecular sulfur sinks in the dense ISM.
Collapse
Affiliation(s)
- Charles Z. Palmer
- Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677, USA;
| | - Ryan C. Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677, USA;
| | - Joseph S. Francisco
- Department of Earth and Environmental Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
15
|
Matveeva R, Falck Erichsen M, Koch H, Høyvik IM. The effect of midbond functions on interaction energies computed using MP2 and CCSD(T). J Comput Chem 2022; 43:121-131. [PMID: 34738658 DOI: 10.1002/jcc.26777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022]
Abstract
In this article we use MP2 and CCSD(T) calculations for the A24 and S66 data sets to explore how midbond functions can be used to generate cost effective counterpoise corrected supramolecular interaction energies of noncovalent complexes. We use the A24 data set to show that the primary role of midbond functions is not to approach the complete basis set limit, but rather to ensure a balanced description of the molecules and the interaction region (unrelated to the basis set superposition error). The need for balance is a consequence of using atom centered basis sets. In the complete basis set limit, the error will disappear, but reaching the complete basis set limit is not feasible beyond small systems. For S66 we investigate the need for increasing the number of midbond centers. Results show that adding a second midbond center increases the accuracy, but the effect is secondary to changing the atom centered basis set. Further, by comparing calculations using the 3s3p2d1f1g midbond set with using aug-cc-pVDZ and aug-cc-pVTZ as midbond sets, we see that the requirements for the midbond set to be effective, is not just that it contains diffuse functions, but also that high angular momentum functions are included. By comparing two approaches for placing midbond centers we show that results are not particularly sensitive to placement as long as the placement is reasonable.
Collapse
Affiliation(s)
- Regina Matveeva
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Merete Falck Erichsen
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Scuola Normale Superiore, Pisa, Italy
| | - Ida-Marie Høyvik
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
16
|
Westbrook B, Beasley G, Fortenberry RC. Polycyclic Aliphatic Hydrocarbons: Is Tetrahedrane Present in UIR Spectra? Phys Chem Chem Phys 2022; 24:14348-14353. [DOI: 10.1039/d2cp01103d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The smallest Platonic hydrocarbon, tetrahedrane, has been subject to frequent theoretical and experimental study for 50 years, but its infrared spectrum and synthetic pathway remain a mystery. The recent partial...
Collapse
|
17
|
Westbrook BR, Fortenberry RC. Anharmonic Vibrational Frequencies of Water Borane and Associated Molecules. Molecules 2021; 26:molecules26237348. [PMID: 34885929 PMCID: PMC8658819 DOI: 10.3390/molecules26237348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
Water borane (BH3OH2) and borinic acid (BH2OH) have been proposed as intermediates along the pathway of hydrogen generation from simple reactants: water and borane. However, the vibrational spectra for neither water borane nor borinic acid has been investigaged experimentally due to the difficulty of isolating them in the gas phase, making accurate quantum chemical predictions for such properties the most viable means of their determination. This work presents theoretical predictions of the full rotational and fundamental vibrational spectra of these two potentially application-rich molecules using quartic force fields at the CCSD(T)-F12b/cc-pCVTZ-F12 level with additional corrections included for the effects of scalar relativity. This computational scheme is further benchmarked against the available gas-phase experimental data for the related borane and HBO molecules. The differences are found to be within 3 cm−1 for the fundamental vibrational frequencies and as close as 15 MHz in the B0 and C0 principal rotational constants. Both BH2OH and BH3OH2 have multiple vibrational modes with intensities greater than 100 km mol−1, namely ν2 and ν4 in BH2OH, and ν1, ν3, ν4, ν9, and ν13 in BH3OH2. Finally, BH3OH2 has a large dipole moment of 4.24 D, which should enable it to be observable by rotational spectroscopy, as well.
Collapse
|
18
|
Westbrook BR, Patel DJ, Dallas JD, Swartzfager GC, Lee TJ, Fortenberry RC. Fundamental Vibrational Frequencies and Spectroscopic Constants of Substituted Cyclopropenylidene (c-C 3HX, X = F, Cl, CN). J Phys Chem A 2021; 125:8860-8868. [PMID: 34609881 DOI: 10.1021/acs.jpca.1c06576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The recent detection of ethynyl-functionalized cyclopropenylidene (c-C3HC2H) has initiated the search for other functional forms of cyclopropenylidene (c-C3H2) in space. There is existing gas-phase rotational spectroscopic data for cyano-cyclopropenylidene (c-C3HCN), but the present work provides the first anharmonic vibrational spectral data for that molecule, as well as the first full set of both rotational and vibrational spectroscopic data for fluoro- and chloro-cyclopropenylidenes (c-C3HF and c-C3HCl). All three molecules have fundamental vibrational frequencies with substantial infrared intensities. Namely, c-C3HCN has a moderately intense fundamental frequency at 1244.4 cm-1, while c-C3HF has two large intensity modes at 1765.4 and 1125.3 cm-1 and c-C3HCl again has two large intensity modes at 1692.0 and 1062.5 cm-1. All of these frequencies are well within the spectral range covered by the high-resolution EXES instrument on NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Further, all three molecules have dipole moments of around 3.0 D in line with c-C3H2, enabling them to be observed by pure rotational spectroscopy, as well. Thus, the rovibrational spectral data presented herein should assist with future laboratory studies of functionalized cyclopropenylidenes and may lead to their interstellar or circumstellar detection.
Collapse
Affiliation(s)
- Brent R Westbrook
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Dev J Patel
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Jax D Dallas
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - G Clark Swartzfager
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States.,Cleveland Central High School, 300 West Sunflower Road, Cleveland, Mississippi 38732, United States
| | - Timothy J Lee
- MS 245-3, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|
19
|
Fortenberry RC, Francisco JS. Anharmonic fundamental vibrational frequencies and spectroscopic constants of the potential HSO 2 radical astromolecule. J Chem Phys 2021; 155:114301. [PMID: 34551550 DOI: 10.1063/5.0062560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The recent report that HSO2 is likely kinetically favored over the HOSO thermodynamic product in hydrogen addition to sulfur dioxide in simulated Venusian atmospheric conditions has led to the need for reference rotational, vibrational, and rovibrational spectral data for this molecule. While matrix-isolation spectroscopy has been able to produce vibrational frequencies for some of the vibrational modes, the full infrared to microwave spectrum of 1 2A' HSO2 is yet to be generated. High-level quantum chemical computations show in this work that the >2.5 D dipole moment of this radical makes it a notable target for possible radioastronomical observation. Additionally, the high intensity antisymmetric S-O stretch is computed here to be 1298.3 cm-1, a 13.9 cm-1 blueshift up from H2 matrix analysis. In any case, the full set of rotational and spectroscopic constants and anharmonic fundamental vibrational frequencies is provided in this work in order to help characterize HSO2 and probe its kinetic favorability.
Collapse
Affiliation(s)
- Ryan C Fortenberry
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA
| | - Joseph S Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
20
|
Davis MC, Fortenberry RC. (T)+EOM Quartic Force Fields for Theoretical Vibrational Spectroscopy of Electronically Excited States. J Chem Theory Comput 2021; 17:4374-4382. [PMID: 34165980 DOI: 10.1021/acs.jctc.1c00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(T)+EOM quartic force fields (QFFs) are proposed for ab initio rovibrational properties of electronically excited states of small molecules. The (T)+EOM method is a simple treatment of the potential surface of the excited state using a composite energy from the CCSD(T) energy for the ground-state configuration and the EOM-CCSD excitation energy for the target state. The method is benchmarked with two open-shell species, HOO and HNF, and two closed-shell species, HNO and HCF. A (T)+EOM QFF with a complete basis set extrapolation (C) and corrections for core correlation (cC) and scalar relativity (R), dubbed (T)+EOM/CcCR, achieves a mean absolute error (MAE) as low as 1.6 cm-1 for the à 2A' state of HOO versus an established benchmark QFF with CCSD(T)-F12b/cc-pVTZ-F12 (F12-TZ) for this variationally accessible electronically excited state. The MAE for anharmonic frequencies for (T)+EOM/CcCR versus F12-TZ for HNF is 7.5 cm-1. The closed-shell species are compared directly with the experiment, where a simpler (T)+EOM QFF using the aug-cc-pVTZ basis set compares more favorably than the more costly (T)+EOM/CcCR, suggesting a possible influence of decreasing accuracy with basis set size. Scans along internal coordinates are also provided which show reasonable modeling of the potential surface by (T)+EOM compared to benchmark QFFs computed for variationally accessible electronic states. The agreement between (T)+EOM/CcCR with F12-TZ and CcCR benchmarks is also shown to be quite accurate for rotational constants and geometries, with an MAE of 0.008 MHz for the rotational constants of (T)+EOM/CcCR versus CcCR for à 2A' HOO and agreement within 0.003 Šfor bond lengths.
Collapse
Affiliation(s)
- Megan C Davis
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|
21
|
Gardner MB, Westbrook BR, Fortenberry RC, Lee TJ. Highly-accurate quartic force fields for the prediction of anharmonic rotational constants and fundamental vibrational frequencies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119184. [PMID: 33293226 DOI: 10.1016/j.saa.2020.119184] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
The CcCR quartic force field (QFF) methodology is capable of computing B0 and C0 rotational constants to within 35 MHz (0.14%) of experiment for triatomic and larger molecules with at least two heavy atoms. Additionally, the same constants for molecules with four or more atoms agree to within 20 MHz (0.12%) of experiment for the current test set. This work also supports previous claims that the same QFF methodology can produce fundamental vibrational frequencies with a deviation less than 5.7 cm-1 from experiment. Consequently, this approach of augmenting complete basis set extrapolated energies with treatments of core electron correlation and scalar relativity produces some of the most accurate rovibrational spectroscopic data available.
Collapse
Affiliation(s)
- Mason B Gardner
- Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677-1848, United States
| | - Brent R Westbrook
- Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677-1848, United States
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677-1848, United States.
| | - Timothy J Lee
- MS 245-3, NASA Ames Research Center, Moffett Field, CA 94035, United States
| |
Collapse
|
22
|
Westbrook BR, Valencia EM, Rushing SC, Tschumper GS, Fortenberry RC. Anharmonic vibrational frequencies of ammonia borane (BH 3NH 3). J Chem Phys 2021; 154:041104. [PMID: 33514082 DOI: 10.1063/5.0040050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The fundamental vibrational frequency of the B-N stretch in BH3NH3 has eluded gas-phase experimental observation for decades. This work offers a theoretical anharmonic prediction of this mode to be 644 cm-1, using a Cartesian quartic force field at the CCSD(T)-F12/cc-pVTZ-F12 level of theory. The other fundamental frequencies reported herein have a mean absolute error of only 5 cm-1 from the seven available gas-phase experimental frequencies, making the anharmonic vibrational frequencies and rotational constants the most accurate computational data available for BH3NH3 to date. The inclusion of Fermi, Coriolis, and Darling-Dennison resonances is a major source of this accuracy, with the non-resonance-corrected frequencies having a mean absolute error of 10 cm-1. In particular, the inclusion of the 2ν6 = ν5 type 1 Fermi resonance increases the B-N stretching frequency by 14 cm-1 compared to previous work. Ammonia borane also represents one of the largest molecules ever studied by quartic force fields, making this work an important step in extending the breadth of application for these theoretical rovibrational techniques.
Collapse
Affiliation(s)
- Brent R Westbrook
- The University of Mississippi, University, Mississippi 38677-1848, USA
| | | | - Spencer C Rushing
- The University of Mississippi, University, Mississippi 38677-1848, USA
| | | | | |
Collapse
|
23
|
Fortenberry RC, DeYonker NJ. Rovibrational Quantum Chemical Treatment of Inorganic and Organometallic Astrochemicals. Acc Chem Res 2021; 54:271-279. [PMID: 33356121 DOI: 10.1021/acs.accounts.0c00631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusOur two groups have both independently and collaboratively been pushing quantum-chemical techniques to produce highly accurate predictions of anharmonic vibrational frequencies and spectroscopic constants for molecules containing atoms outside of the typical upper p block. Methodologies employ composite approaches, relying on various levels of coupled cluster theory-most often at the singles, doubles, and perturbative triples level-and quartic force field constructions of the potential portion of the intramolecular Watson Hamiltonian. Such methods are known to perform well for organic species, and we have extended this to molecules containing atoms outside of this realm.One notable atom that has received much attention in this application is magnesium. Mg is the second-most-abundant element in the Earth's mantle, and while molecules containing this element are among the confirmed astrochemicals, its further atomic abundance in the galaxy implies that many more molecules (both purely inorganic and organometallic) containing element 12 exist in astrophysical regions in chemical sizes between those of atoms and dust-sized nanocrystals. Our approach discussed herein is producing quality benchmarks and predicting novel data for magnesium-bearing molecules.The story is similar for Al and Si, which are also notably abundant in both rocky bodies and the universe at large. While Na, Sc, and Cu may not be as abundant as Mg, Al, and Si, molecules containing Na and transition metals have also previously been reported to be detected beyond the Earth. Consequently, the need to produce spectral reference data for molecules containing such atoms is growing. While several experimental groups (including, notably, the groups in Arizona, Boston, and France/Spain) have clearly led the way in detection of inorganic/organometallic molecules in space, computational support and even rational design can provide novel avenues for the detection of molecules containing atoms not typically studied in most laboratories. The application of quantum chemistry to other elements beyond carbon and its cronies at the top right of the periodic table promises a better understanding of the observable universe. It will also provide novel and fundamental chemical insights pushing the "central science" into new molecular territory.
Collapse
Affiliation(s)
- Ryan C. Fortenberry
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Nathan J. DeYonker
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
24
|
Fortenberry RC, Trabelsi T, Francisco JS. Anharmonic Frequencies and Spectroscopic Constants of OAlOH and AlOH: Strong Bonding but Unhindered Motion. J Phys Chem A 2020; 124:8834-8841. [PMID: 33044814 DOI: 10.1021/acs.jpca.0c07945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The astrophysical buildup of premineral nanocrystals from atoms to the smallest network-covalent solids will require observations of various small molecules containing the most common elements in minerals including aluminum and oxygen. The present work utilizes high-level quantum chemical quartic force field (QFF) approaches to produce anharmonic vibrational frequencies and spectroscopic constants for such species. The computed Beff for the astrochemically known AlOH molecule at 15780.5 MHz is a mere 40 MHz above the experimental value implying that the Beff for OAlOH at 5580.9 MHz is similarly accurate. The additional 7.31 D dipole moment in OAlOH implies that this molecule is a viable target for interstellar observation. Unlike the other anharmonic vibrational frequencies reported in this work, the Al-O-H bending frequencies in both AlOH and OAlOH are poorly described in the present QFF results. However, this failing actually highlights the fact that these bends are exceptionally floppy yet with counterintuitive exceedingly strong bonding. The Al-O bond energies are 128.2 and 107.2 kcal/mol, respective of AlOH and OAlOH, while the barriers to linearity are meager 16.6 and 380.7 cm-1 (0.1 and 1.1 kcal/mol).
Collapse
Affiliation(s)
- Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Tarek Trabelsi
- Department of Earth and Environmental Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph S Francisco
- Department of Earth and Environmental Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
25
|
McDonald DC, Rittgers BM, Theis RA, Fortenberry RC, Marks JH, Leicht D, Duncan MA. Infrared spectroscopy and anharmonic theory of H 3 +Ar 2,3 complexes: The role of symmetry in solvation. J Chem Phys 2020; 153:134305. [PMID: 33032436 DOI: 10.1063/5.0023205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The vibrational spectra of H3 +Ar2,3 and D3 +Ar2,3 are investigated in the 2000 cm-1 to 4500 cm-1 region through a combination of mass-selected infrared laser photodissociation spectroscopy and computational work including the effects of anharmonicity. In the reduced symmetry of the di-argon complex, vibrational activity is detected in the regions of both the symmetric and antisymmetric hydrogen stretching modes of H3 +. The tri-argon complex restores the D3h symmetry of the H3 + ion, with a concomitant reduction in the vibrational activity that is limited to the region of the antisymmetric stretch. Throughout these spectra, additional bands are detected beyond those predicted with harmonic vibrational theory. Anharmonic theory is able to reproduce some of the additional bands, with varying degrees of success.
Collapse
Affiliation(s)
- D C McDonald
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - B M Rittgers
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - R A Theis
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia 30460, USA
| | - R C Fortenberry
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, USA
| | - J H Marks
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - D Leicht
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - M A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
26
|
Westbrook BR, Del Rio WA, Lee TJ, Fortenberry RC. Overcoming the out-of-plane bending issue in an aromatic hydrocarbon: the anharmonic vibrational frequencies of c-(CH)C 3H 2. Phys Chem Chem Phys 2020; 22:12951-12958. [PMID: 32478782 DOI: 10.1039/d0cp01889a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The challenges associated with the out-of-plane bending problem in multiply-bonded hydrocarbon molecules can be mitigated in quartic force field analyses by varying the step size in the out-of-plane coordinates. Carbon is a highly prevalent element in astronomical and terrestrial environments, but this major piece of its spectra has eluded theoretical examinations for decades. Earlier explanations for this problem focused on method and basis set issues, while this work seeks to corroborate the recent diagnosis as a numerical instability problem related to the generation of the potential energy surface. Explicit anharmonic frequencies for c-(CH)C3H2+ are computed using a quartic force field and the CCSD(T)-F12b method with cc-pVDZ-F12, cc-pVTZ-F12, and aug-cc-pVTZ basis sets. The first of these is shown to offer accuracy comparable to that of the latter two with a substantial reduction in computational time. Additionally, c-(CH)C3H2+ is shown to have two fundamental frequencies at the onset of the interstellar unidentified infrared bands, at 5.134 and 6.088 μm or 1947.9 and 1642.6 cm-1, respectively. This suggests that the results in the present study should assist in the attribution of parts of these aromatic bands, as well as provide data in support of the laboratory or astronomical detection of c-(CH)C3H2+.
Collapse
Affiliation(s)
- Brent R Westbrook
- Department of Chemistry & Biochemistry, University of Mississippi, MS 38677-1848, USA.
| | | | | | | |
Collapse
|
27
|
Fortenberry RC, Wiesenfeld L. A Molecular Candle Where Few Molecules Shine: HeHHe . Molecules 2020; 25:molecules25092183. [PMID: 32392765 PMCID: PMC7249080 DOI: 10.3390/molecules25092183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/03/2022] Open
Abstract
HeHHe+ is the only potential molecule comprised of atoms present in the early universe that is also easily observable in the infrared. This molecule has been known to exist in mass spectrometry experiments for nearly half-a-century and is likely present, but as-of-yet unconfirmed, in cold plasmas. There can exist only a handful of plausible primordial molecules in the epochs before metals (elements with nuclei heavier than 4He as astronomers call them) were synthesized in the universe, and most of these are both rotationally and vibrationally dark. The current work brings HeHHe+ into the discussion as a possible (and potentially only) molecular candle for probing high-z and any metal-deprived regions due to its exceptionally bright infrared feature previously predicted to lie at 7.43 μm. Furthermore, the present study provides new insights into its possible formation mechanisms as well as marked stability, along with the decisive role of anharmonic zero-point energies. A new entrance pathway is proposed through the triplet state (3B1) of the He2H+ molecule complexed with a hydrogen atom and a subsequent 10.90 eV charge transfer/photon emission into the linear and vibrationally-bright 1Σg+ HeHHe+ form.
Collapse
Affiliation(s)
- Ryan C. Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677-1848, USA
- Correspondence: ; Tel.: +1-662-915-1687
| | - Laurent Wiesenfeld
- Laboratoire Aimé-Cotton, CNRS & Université Paris-Saclay, 91405 Orsay, France;
| |
Collapse
|
28
|
Westbrook BR, Fortenberry RC. Anharmonic Frequencies of (MO) 2 and Related Hydrides for M = Mg, Al, Si, P, S, Ca, and Ti and Heuristics for Predicting Anharmonic Corrections of Inorganic Oxides. J Phys Chem A 2020; 124:3191-3204. [PMID: 32212705 DOI: 10.1021/acs.jpca.0c01609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The low-frequency vibrational fundamentals of D2h inorganic oxides are readily modeled by heuristic scaling factors at fractions of the computational cost compared to explicit anharmonic frequency computations. Oxygen and the other elements in the present study are abundant in geochemical environments and have the potential to aggregate into minerals in planet-forming regions or in the remnants of supernovae. Explicit quartic force field computations at the CCSD(T)-F12b/cc-pVTZ-F12 level of theory generate scaling factors that accurately predict the anharmonic frequencies with an average error of less than 1.0 cm-1 for both the metal-oxygen stretching frequencies and the torsion and antisymmetric stretching frequencies. Inclusion of hydrogen motions is less absolutely accurate but is similarly relatively predictive. The fundamental vibrational frequencies for the seven tetra-atomic inorganic oxides examined presently fall below 876 cm-1 and most of the hydrogenated species do as well. Additionally, ν6 for the SiO dimer is shown to have an intensity of 562 km mol-1, with each of the other molecules having one or more frequencies with intensities greater than 80 km mol-1, again with most in the low-frequency infrared range. These intensities and the frequencies computed in the present study should assist in laboratory characterization and potential interstellar or circumstellar observation.
Collapse
Affiliation(s)
- Brent R Westbrook
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|
29
|
Rovibrational Spectral Analysis of CO3 and C2O3: Potential Sources for O2 Observed in Comet 67P/Churyumov–Gerasimenko. ACTA ACUST UNITED AC 2019. [DOI: 10.3847/2041-8213/ab53e8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|