1
|
Volostnykh MV, Kirakosyan GA, Sinelshchikova AA, Ermakova EV, Gorbunova YG, Tsivadze AY, Borisov SM, Meyer M, Khrouz L, Monnereau C, Parola S, Bessmertnykh-Lemeune A. Water-soluble platinum and palladium porphyrins with peripheral ethyl phosphonic acid substituents: synthesis, aggregation in solution, and photocatalytic properties. Dalton Trans 2025; 54:2340-2356. [PMID: 39775379 DOI: 10.1039/d4dt03068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Water-soluble porphyrins have garnered significant attention due to their broad range of applications in biomedicine, catalysis, and material chemistry. In this work, water-soluble platinum(II) and palladium(II) complexes with porphyrins bearing ethyl phosphonate substituents, namely, Pt/Pd 10-(ethoxyhydroxyphosphoryl)-5,15-di(p-carboxyphenyl)porphyrins (M3m, M = Pt(II), Pd(II)) and Pt/Pd 5,10-bis(ethoxyhydroxyphosphoryl)-10,20-diarylporphyrins (M1d-M3d; aryl = p-tolyl (1), mesityl (2), p-carboxyphenyl (3)), were synthesized by alkaline hydrolysis of the corresponding diethyl phosphonates M6m and M4d-M6d. NMR, UV-vis, and fluorescence spectroscopy revealed that the mono-phosphonates M3m tend to form aggregates in aqueous media, while the bis-phosphonates M3d exist predominantly as monomeric species across a wide range of concentrations (10-6-10-3 M), ionic strengths (0-0.81 M), and pH values (4-12). Single-crystal X-ray diffraction studies of the diethyl phosphonates Pt6d and Pd6d revealed that π-π stacking of the aromatic macrocycles is sterically hindered in the crystals, providing a rationale for the low degree of solution aggregation observed for ethyl phosphonate M3d. Photophysical studies of M3m and M1d-M3d demonstrated that these compounds are phosphorescent and generate singlet oxygen in aqueous solutions. Pd(II) complex Pd3d is an excellent photocatalyst for the oxidation of sulfides using di-oxygen in a solvent mixture (MeCN/H2O, 4 : 1 v/v). Under these conditions, various alkyl and aryl sulfides were quantitatively converted into the desired sulfoxides. For the oxygenation of mixed alkyl-aryl sulfides, Pd3d outperforms Pd(II) meso-tetrakis(p-carboxyphenyl)porphyrin (PdTCPP). This photocatalyst can be recycled and reused to afford sulfoxides with no loss of product yield.
Collapse
Affiliation(s)
- Marina V Volostnykh
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
| | - Gayane A Kirakosyan
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991, Russia
| | - Anna A Sinelshchikova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991, Russia
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Michel Meyer
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
| | | | | | - Stephane Parola
- UCBL, ENS de Lyon, CNRS, LCH, UMR 5182, 69342 Lyon Cedex 07, France
| | - Alla Bessmertnykh-Lemeune
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
- CNRS, ENS de Lyon, LCH, UMR 5182, 69342 Lyon Cedex 07, France
| |
Collapse
|
2
|
Cheng Q, Li Y, Huang W, Li K, Lan M, Wang B, Wang J, Song X. Copper coordination-based conjugated polymer nanoparticles for synergistic photodynamic and chemodynamic therapy. Chem Commun (Camb) 2023; 59:5886-5889. [PMID: 37097084 DOI: 10.1039/d3cc01107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
In this work, we presented a copper coordination-based conjugated polymer nanoparticle (PPE-Cu NPs) for synergistic PDT/CDT. Upon irradiation, PPE-Cu NPs exhibited good singlet oxygen generation capability (ΦΔ = 0.33). Meanwhile, PPE-Cu NPs were able to generate ˙OH in the presence of GSH and H2O2. Cellular experiments demonstrated that PPE-Cu NPs can serve as effective agents for synergistic PDT/CDT therapy.
Collapse
Affiliation(s)
- Qiang Cheng
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuyan Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ke Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Minhuan Lan
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Jianxiu Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
3
|
Kashapov RR, Razuvayeva YS, Lukashenko SS, Amerhanova SK, Lyubina AP, Voloshina AD, Syakaev VV, Salnikov VV, Zakharova LY. Supramolecular Self-Assembly of Porphyrin and Metallosurfactant as a Drug Nanocontainer Design. NANOMATERIALS 2022; 12:nano12121986. [PMID: 35745324 PMCID: PMC9228287 DOI: 10.3390/nano12121986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022]
Abstract
The combined method of treating malignant neoplasms using photodynamic therapy and chemotherapy is undoubtedly a promising and highly effective treatment method. The development and establishment of photodynamic cancer therapy is closely related to the creation of sensitizers based on porphyrins. The present study is devoted to the investigation of the spectroscopic, aggregation, and solubilization properties of the supramolecular system based on 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TSPP) and lanthanum-containing surfactant (LaSurf) in an aqueous medium. The latter is a complex of lanthanum nitrate and two cationic amphiphilic molecules of 4-aza-1-hexadecylazoniabicyclo[2.2.2]octane bromide. The mixed TSPP–LaSurf complexes can spontaneously assemble into various nanostructures capable of binding the anticancer drug cisplatin. Morphological behavior, stability, and ability to drug binding of nanostructures can be tailored by varying the molar ratio and the concentration of components. The guest binding is shown to be additional factor controlling structural rearrangements and properties of the supramolecular TSPP–LaSurf complexes.
Collapse
Affiliation(s)
- Ruslan R. Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
- Correspondence: ; Tel.: +7-(843)-273-22-93
| | - Yuliya S. Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Svetlana S. Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Syumbelya K. Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Victor V. Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Vadim V. Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia;
| | - Lucia Y. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| |
Collapse
|
4
|
Weng XL, Liu JY. Strategies for maximizing photothermal conversion efficiency based on organic dyes. Drug Discov Today 2021; 26:2045-2052. [PMID: 33741495 DOI: 10.1016/j.drudis.2021.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/16/2021] [Accepted: 03/09/2021] [Indexed: 01/15/2023]
Abstract
Photothermal therapy (PTT) has emerged as a promising therapeutic approach for tumor control and ablation. Attention has focused on exploring advanced organic photothermal agents (OPTAs), with advantages of easy modification, adjustable photophysical and photochemical properties, good compatibility, and inherent biodegradability. However, few detailed studies on how to maximally channelize nonradiative heat generation from the viewpoint of the photothermal conversion mechanism have been reported. Thus, here we assimilate and elaborate on several available action mechanisms to maximize the photothermal conversion efficiency (PCE) of organic dyes. Moreover, we also propose several potential challenges that require substantial future work to address.
Collapse
Affiliation(s)
- Xiao-Lu Weng
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jian-Yong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China; State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|