1
|
Rafique H, Iqbal MW, Wabaidur SM, Hassan HU, Afzal AM, Abbas T, Habila MA, Elahi E. The supercapattery designed with a binary composite of niobium silver sulfide (NbAg 2S) and activated carbon for enhanced electrochemical performance. RSC Adv 2023; 13:12634-12645. [PMID: 37101525 PMCID: PMC10123492 DOI: 10.1039/d3ra01230a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
A supercapattery is a hybrid device that is a combination of a battery and a capacitor. Niobium sulfide (NbS), silver sulfide (Ag2S), and niobium silver sulfide (NbAg2S) were synthesized by a simple hydrothermal method. NbAg2S (50/50 wt% ratio) had a specific capacity of 654 C g-1, which was higher than the combined specific capacities of NbS (440 C g-1) and Ag2S (232 C g-1), as determined by the electrochemical investigation of a three-cell assembly. Activated carbon and NbAg2S were combined to develop the asymmetric device (NbAg2S//AC). A maximum specific capacity of 142 C g-1 was delivered by the supercapattery (NbAg2S//AC). The supercapattery (NbAg2S/AC) provided 43.06 W h kg-1 energy density while retaining 750 W kg-1 power density. The stability of the NbAg2S//AC device was evaluated by subjecting it to 5000 cycles. After 5000 cycles, the (NbAg2S/AC) device still had 93% of its initial capacity. This research indicates that merging NbS and Ag2S (50/50 wt% ratio) may be the best choice for future energy storage technologies.
Collapse
Affiliation(s)
- Hirra Rafique
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | | | | | - Haseeb Ul Hassan
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Amir Muhammad Afzal
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Tasawar Abbas
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Mohamed A Habila
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Ehsan Elahi
- Department of Physics and Astronomy, Sejong University Seoul South Korea
| |
Collapse
|
2
|
Exploring the Bioactive Potentials of C 60-AgNPs Nano-Composites against Malignancies and Microbial Infections. Int J Mol Sci 2022; 23:ijms23020714. [PMID: 35054912 PMCID: PMC8776077 DOI: 10.3390/ijms23020714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
At present, the potential role of the AgNPs/endo-fullerene molecule metal nano-composite has been evaluated over the biosystems in-vitro. The intra-atomic configuration of the fullerene molecule (C60) has been studied in-vitro for the anti-proliferative activity of human breast adenocarcinoma (MDA-MB-231) cell lines and antimicrobial activity against a few human pathogens that have been augmented with the pristine surface plasmonic electrons and antibiotic activity of AgNPs. Furthermore, FTIR revealed the basic vibrational signatures at ~3300 cm-1, 1023 cm-1, 1400 cm-1 for O-H, C-O, and C-H groups, respectively, for the carbon and oxygen atoms of the C60 molecule. NMR studies exhibited the different footprints and magnetic moments at ~7.285 ppm, explaining the unique underlying electrochemical attributes of the fullerene molecule. Such unique electronic and physico-chemical properties of the caged carbon structure raise hope for applications into the drug delivery domain. The in-vitro dose-dependent application of C60 elicits a toxic response against both the breast adenocarcinoma cell lines and pathogenic microbes. That enables the use of AgNPs decorated C60 endo fullerene molecules to design an effective anti-cancerous drug delivery and antimicrobial agent in the future, bringing a revolutionary change in the perspective of a treatment regime.
Collapse
|
3
|
Trakakis G, Tomara G, Datsyuk V, Sygellou L, Bakolas A, Tasis D, Parthenios J, Krontiras C, Georga S, Galiotis C, Papagelis K. Mechanical, Electrical, and Thermal Properties of Carbon Nanotube Buckypapers/Epoxy Nanocomposites Produced by Oxidized and Epoxidized Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4308. [PMID: 32992513 PMCID: PMC7579272 DOI: 10.3390/ma13194308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
High volume fraction carbon nanotube (CNT) composites (7.5-16% vol.) were fabricated by the impregnation of CNT buckypapers into epoxy resin. To enhance the interfacial reaction with the epoxy resin, the CNTs were modified by two different treatments, namely, an epoxidation treatment and a chemical oxidation. The chemical treatment was found to result in CNT length severance and to affect the porosity of the buckypapers, having an important impact on the physico-mechanical properties of the nanocomposites. Overall, the mechanical, electrical, and thermal properties of the impregnated buckypapers were found to be superior of the neat epoxy resin, offering an attractive combination of mechanical, electrical, and thermal properties for multifunctional composites.
Collapse
Affiliation(s)
- George Trakakis
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences (ICE-HT), P.O. Box 1414, GR-26504 Patras, Greece; (G.T.); (L.S.); (J.P.); (C.G.)
| | - Georgia Tomara
- Department of Physics, University of Patras, 26504 Rio Patras, Greece; (G.T.); (C.K.); (S.G.)
| | - Vitaliy Datsyuk
- Physics Department, Institute of Experimental Physic, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany;
| | - Labrini Sygellou
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences (ICE-HT), P.O. Box 1414, GR-26504 Patras, Greece; (G.T.); (L.S.); (J.P.); (C.G.)
| | - Asterios Bakolas
- School of Chemical Engineering, National Technical University of Athens, GR-15773 Athens, Greece;
| | - Dimitrios Tasis
- Department of Chemistry (Section of Physical Chemistry), University of Ioannina, 45110 Ioannina, Greece;
| | - John Parthenios
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences (ICE-HT), P.O. Box 1414, GR-26504 Patras, Greece; (G.T.); (L.S.); (J.P.); (C.G.)
| | - Christoforos Krontiras
- Department of Physics, University of Patras, 26504 Rio Patras, Greece; (G.T.); (C.K.); (S.G.)
| | - Stavroula Georga
- Department of Physics, University of Patras, 26504 Rio Patras, Greece; (G.T.); (C.K.); (S.G.)
| | - Costas Galiotis
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences (ICE-HT), P.O. Box 1414, GR-26504 Patras, Greece; (G.T.); (L.S.); (J.P.); (C.G.)
- Department of Chemical Engineering, University of Patras, GR-26504 Patras, Greece
| | - Kostas Papagelis
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences (ICE-HT), P.O. Box 1414, GR-26504 Patras, Greece; (G.T.); (L.S.); (J.P.); (C.G.)
- School of Physics, Department of Solid State Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Balasubramaniam S, Mohanty A, Balasingam SK, Kim SJ, Ramadoss A. Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries. NANO-MICRO LETTERS 2020; 12:85. [PMID: 34138304 PMCID: PMC7770895 DOI: 10.1007/s40820-020-0413-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/13/2020] [Indexed: 05/21/2023]
Abstract
Electrochemical energy storage devices (EESs) play a crucial role for the construction of sustainable energy storage system from the point of generation to the end user due to the intermittent nature of renewable sources. Additionally, to meet the demand for next-generation electronic applications, optimizing the energy and power densities of EESs with long cycle life is the crucial factor. Great efforts have been devoted towards the search for new materials, to augment the overall performance of the EESs. Although there are a lot of ongoing researches in this field, the performance does not meet up to the level of commercialization. A further understanding of the charge storage mechanism and development of new electrode materials are highly required. The present review explains the overview of recent progress in supercapattery devices with reference to their various aspects. The different charge storage mechanisms and the multiple factors involved in the performance of the supercapattery are described in detail. Moreover, recent advancements in this supercapattery research and its electrochemical performances are reviewed. Finally, the challenges and possible future developments in this field are summarized.
Collapse
Affiliation(s)
- Saravanakumar Balasubramaniam
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, 751024, India
| | - Ankita Mohanty
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, 751024, India
| | - Suresh Kannan Balasingam
- Department of Materials Science and Engineering, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Sang Jae Kim
- Nanomaterials and Systems Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ananthakumar Ramadoss
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, 751024, India.
| |
Collapse
|