1
|
Delgado A, Vera-Villalobos J, Paz JL, Lossada C, Hurtado-León ML, Marrero-Ponce Y, Toro-Mendoza J, Alvarado YJ, González-Paz L. Macromolecular crowding impact on anti-CRISPR AcrIIC3/NmeCas9 complex: Insights from scaled particle theory, molecular dynamics, and elastic networks models. Int J Biol Macromol 2023:125113. [PMID: 37257544 DOI: 10.1016/j.ijbiomac.2023.125113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
The coupling of Cas9 and its inhibitor AcrIIC3, both from the bacterium Neisseria meningitidis (Nme), form a homodimer of the (NmeCas9/AcrIIC3)2 type. This coupling was studied to assess the impact of their interaction with the crowders in the following environments: (1) homogeneous crowded, (2) heterogeneous, and (3) microheterogeneous cytoplasmic. For this, statistical thermodynamic models based on the scaled particle theory (SPT) were used, considering the attractive and repulsive protein-crowders contributions and the stability of the formation of spherocylindrical homodimers and the effects of changes in the size of spherical dimers were estimated. Studies based on models of dynamics, elastic networks, and statistical potentials to the formation of complexes NmeCas9/AcrIIC3 using PEG as the crowding agent support the predictions from SPT. Macromolecular crowding stabilizes the formation of the dimers, being more significant when the attractive protein-crowder interactions are weaker and the crowders are smaller. The coupling is favored towards the formation of spherical and compact dimers due to crowding addition (excluded-volume effects) and the thermodynamic stability of the dimers is markedly dependent on the size of the crowders. These results support the experimental mechanistic proposal of inhibition of NmeCas9 mediated by AcrIIC3.
Collapse
Affiliation(s)
- Ariana Delgado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Laboratorio de Química Biofísica Teórica y Experimental (LQBTE), 4001 Maracaibo, Zulia, Venezuela; Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Química, Laboratorio de Química Teórica y Computacional (LQTC), 4001 Maracaibo, Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Laboratorio de Biocomputación (LB), 4001 Maracaibo, Zulia, Venezuela
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Venezuela
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Quito 170157, Pichincha, Ecuador; Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California 22860, Mexico; Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador
| | - Jhoan Toro-Mendoza
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Laboratorio de Química Biofísica Teórica y Experimental (LQBTE), 4001 Maracaibo, Zulia, Venezuela
| | - Ysaías J Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Laboratorio de Química Biofísica Teórica y Experimental (LQBTE), 4001 Maracaibo, Zulia, Venezuela.
| | - Lenin González-Paz
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Laboratorio de Biocomputación (LB), 4001 Maracaibo, Zulia, Venezuela.
| |
Collapse
|
2
|
Speer SL, Stewart CJ, Sapir L, Harries D, Pielak GJ. Macromolecular Crowding Is More than Hard-Core Repulsions. Annu Rev Biophys 2022; 51:267-300. [PMID: 35239418 DOI: 10.1146/annurev-biophys-091321-071829] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins. Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon L Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Claire J Stewart
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Liel Sapir
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA; .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina, USA.,Lineberger Cancer Research Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Graziano G. Comment on "The Gibbs free energy of cavity formation in a diverse set of solvents"[J. Chem. Phys. 153, 134501 (2020)]. J Chem Phys 2021; 154:187101. [PMID: 34241039 DOI: 10.1063/5.0044991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is pointed out that the unexpected result that the magnitude of the reversible work of cavity creation in ethylene glycol proves to be larger than that in water [I. Sedov and T. Magsumov, J. Chem. Phys. 153, 134501 (2020)] could be due to that (a) the density of the used computational model of this liquid is "significantly" larger than the experimental one and (b) the procedure adopted to perform the comparison among the different liquids is not "strictly" correct. It is also indicated that several lines of evidence suggest that the magnitude of the reversible work of cavity creation in water can be larger than that in ethylene glycol.
Collapse
Affiliation(s)
- Giuseppe Graziano
- Department of Science and Technology, University of Sannio, Via Francesco de Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
4
|
Thole JF, Fadero TC, Bonin JP, Stadmiller SS, Giudice JA, Pielak GJ. Danio rerio Oocytes for Eukaryotic In-Cell NMR. Biochemistry 2021; 60:451-459. [PMID: 33534998 DOI: 10.1021/acs.biochem.0c00922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Understanding how the crowded and complex cellular milieu affects protein stability and dynamics has only recently become possible by using techniques such as in-cell nuclear magnetic resonance. However, the combination of stabilizing and destabilizing interactions makes simple predictions difficult. Here we show the potential of Danio rerio oocytes as an in-cell nuclear magnetic resonance model that can be widely used to measure protein stability and dynamics. We demonstrate that in eukaryotic oocytes, which are 3-6-fold less crowded than other cell types, attractive chemical interactions still dominate effects on protein stability and slow tumbling times, compared to the effects of dilute buffer.
Collapse
Affiliation(s)
- Joseph F Thole
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tanner C Fadero
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey P Bonin
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha S Stadmiller
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan A Giudice
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gary J Pielak
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Stadmiller SS, Pielak GJ. Protein-complex stability in cells and in vitro under crowded conditions. Curr Opin Struct Biol 2020; 66:183-192. [PMID: 33285342 DOI: 10.1016/j.sbi.2020.10.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 11/29/2022]
Abstract
Biology is beginning to appreciate the effects of the crowded and complex intracellular environment on the equilibrium thermodynamics and kinetics of protein folding. The next logical step involves the interactions between proteins. We review quantitative, wet-experiment based efforts aimed at understanding how and why high concentrations of small molecules, synthetic polymers, biologically relevant cosolutes and the interior of living cells affect the energetics of protein-protein interactions. We then address popular theories used to explain the effects and suggest expeditious paths for a more methodical integration of experiment and simulation.
Collapse
Affiliation(s)
- Samantha S Stadmiller
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3290, USA; Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|