1
|
Teng Y, Zhong Y, Xu P, Li J, Pan Z, Hu T, Ji H, Zhang X, Lou Y. Utilizing pillararenes as capping agents to stabilize copper nanoparticles for cost-effective and high-performance SERS application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125919. [PMID: 39986254 DOI: 10.1016/j.saa.2025.125919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Gold, silver, and copper nanoparticles (CuNPs) exhibit strong localized surface plasmon resonance (LSPR) effects at specific sizes, which can amplify the Raman signals of adsorbed molecules. However, despite the cost-effectiveness of CuNPs, their applications in surface-enhanced Raman spectroscopy (SERS) are limited due to their susceptibility to surface oxidation and particle aggregation. In this study, three distinct capping agents-pillararenes, polyvinylpyrrolidone, and sodium citrate-were employed to enhance particle dispersion, improve stability, and protect the CuNPs from oxidation and degradation. The synthesized CuNPs were thoroughly characterized using UV-Vis absorption spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and Raman spectroscopy. Results revealed that CuNPs capped with pillararenes demonstrated superior SERS enhancement effects when using 4-aminothiophenol as the probe molecule, achieving an enhancement factor of 3.7 × 105. Furthermore, pillararene-capped CuNPs exhibited a broader linear range in SERS quantitative detection applications. This proposed method offers a versatile and cost-effective SERS substrate compared to commercial gold and silver nanocolloids, positioning it as a promising candidate for a wide range of SERS applications.
Collapse
Affiliation(s)
- Yuanjie Teng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yi Zhong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pei Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jie Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zaifa Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tianyu Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haibing Ji
- Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310012, China
| | - Xingchen Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yantao Lou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Liu KW, Sie PY, Huang JY, Chen HY, Chen YL, Lin YC, Liao MY. Rational design of stable Cu and AuCu nanoparticles for investigations of size-enhanced SERS applications. Anal Chim Acta 2024; 1329:343189. [PMID: 39396279 DOI: 10.1016/j.aca.2024.343189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND While significant progress has been made to clarify the effects of Au and Ag nanoparticle size on SERS enhancement, research on the size effects of copper nanoparticles and copper-related nanoalloys on SERS enhancement remain scarce. Nanoscale copper (Cu) is important because of its unique sensing and catalytic properties; however, research on its size and compositional effects remains a significant challenge because of the intricate fabrication process and difficulty in preventing oxidation. RESULTS Our study elucidated the size-dependent, surface-enhanced Raman scattering (SERS) of Cu NPs, particularly the sensing capabilities of both electromagnetic (EM) SERS at 1.5 × 103 and chemical enhancement (CE) SERS at 3.6 × 104 of approximately 58 nm Cu NPs. Additionally, a solution aging examination revealed preservation of the metal-related core structure, surface plasmon resonance, and SERS features of the PSMA/ONPG-coated Cu NPs for up to 7 days. With the introduction of galvanic replacement reactions and laser ablation syntheses, the incorporation of Au atoms enabled the fabrication of 7-75 nm AuxCuy nanoparticles by using the remaining Cu core after aging in water, which offered precise control over the Cu/Au ratio from 5/95 to 29/71. SERS measurements of the large AuxCuy nanoparticles amplified up to 1.4 × 104 of the EM-mediated vibrational signals from the adsorbed molecules. The strong Au-S chemical bonds of the Au-rich AuxCuy nanocrystals increased the CE SERS to 5.5 × 104, whereas the Au3Cu1 crystals at the AuxCuy interface decreased the CE SERS but improved the electron transfer for catalysis via SERS detection. SIGNIFICANCE Our research provides further insight into the structural and size effects of Cu and AuCu alloys used as SERS enhancers and offers avenues for designing cutting-edge SERS catalytic sensors tailored to Cu-related catalytic reactive structures. For the first time, we also manipulated the Cu atomic structure and surface composition to understand the significance of surface effects on SERS substrates of the Cu series from a nanoscale analytical perspective.
Collapse
Affiliation(s)
- Kuan-Wen Liu
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Pei-Yu Sie
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Jing-Yin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Hsi-Ying Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Yi-Lun Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Yu-Ching Lin
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan.
| |
Collapse
|
3
|
Majumdar D. 2D Material-Based Surface-Enhanced Raman Spectroscopy Platforms (Either Alone or in Nanocomposite Form)-From a Chemical Enhancement Perspective. ACS OMEGA 2024; 9:40242-40258. [PMID: 39346812 PMCID: PMC11425813 DOI: 10.1021/acsomega.4c06398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique with molecular fingerprinting capability and high sensitivity, even down to the single-molecule level. As it is 50 years since the observation of the phenomenon, it has now become an important task to discuss the challenges in this field and determine the areas of development. Electromagnetic enhancement has a mature theoretical explanation, while a chemical mechanism which involves more complex interactions has been difficult to elucidate until recently. This article focuses on the 2D material-based platforms where chemical enhancement (CE) is a significant contributor to SERS. In the context of a diverse range (transition metal dichalcogenides, MXenes, etc.) and categories (insulating, semiconducting, semimetallic, and metallic) of 2D materials, the review aims to realize the influence of various factors on SERS response such as substrates (layer thickness, structural phase, etc.), analytes (energy levels, molecular orientation, etc.), excitation wavelengths, molecular resonances, charge-transfer transitions, dipole interactions, etc. Some examples of special treatments or approaches have been outlined for overcoming well-known limitations of SERS and include how CE benefits from the defect-induced physicochemical changes to 2D materials mostly via the charge-transport ability or surface interaction efficiency. The review may help readers understand different phenomena involved in CE and broaden the substrate-designing approaches based on a diverse set of 2D materials.
Collapse
Affiliation(s)
- Dipanwita Majumdar
- Satyendra Nath Bose National Centre
for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
4
|
Ly NH, Aminabhavi TM, Vasseghian Y, Joo SW. Advanced protein nanobiosensors to in-situ detect hazardous material in the environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121727. [PMID: 39008923 DOI: 10.1016/j.jenvman.2024.121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Determining hazardous substances in the environment is vital to maintaining the safety and health of all components of society, including the ecosystem and humans. Recently, protein-based nanobiosensors have emerged as effective tools for monitoring potentially hazardous substances in situ. Nanobiosensor detection mode is a combination of particular plasmonic nanomaterials (e.g., nanoparticles, nanotubes, quantum dots, etc.), and specific bioreceptors (e.g., aptamers, antibodies, DNA, etc.), which has the benefits of high selectivity, sensitivity, and compatibility with biological systems. The role of these nanobiosensors in identifying dangerous substances (e.g., heavy metals, organic pollutants, pathogens, toxins, etc.) is discussed along with different detection mechanisms and various transduction methods (e.g., electrical, optical, mechanical, electrochemical, etc.). In addition, topics discussed include the design and construction of these sensors, the selection of proteins, the integration of nanoparticles, and their development processes. A discussion of the challenges and prospects of this technology is also included. As a result, protein nanobiosensors are introduced as a powerful tool for monitoring and improving environmental quality and community safety.
Collapse
Affiliation(s)
- Nguyen Hoang Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, South Korea
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India; Korea University, Seoul, South Korea; School of Engineering, University of Petroleum and Energy Studies (UPES) Uttarakhand, Dehradun, 248 007, India.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| |
Collapse
|
5
|
Haripriya P, Revathy MP, Kumar MS, Navaneeth P, Suneesh PV, T G SB, Darbha VRK. Biosurfactant-capped CuO nanoparticles coated cotton/polypropylene fabrics toward antimicrobial textile applications. NANOTECHNOLOGY 2024; 35:165601. [PMID: 38198713 DOI: 10.1088/1361-6528/ad1d15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
The global COVID-19 pandemic has led to an increase in the importance of implementing effective measures to prevent the spread of microorganisms. Consequently, there is a growing demand for antimicrobial materials, specifically antimicrobial textiles and face masks, because of the surge in diseases caused by bacteria and viruses like SARS-CoV-2. Face masks that possess built-in antibacterial properties can rapidly deactivate microorganisms, enabling reuse and reducing the incidence of illnesses. Among the numerous types of inorganic nanomaterials, copper oxide nanoparticles (CuO NPs) have been identified as cost-effective and highly efficient antimicrobial agents for inactivating microbes. Furthermore, biosurfactants have recently been recognized for their potential antimicrobial effects, in addition to inorganic nanoparticles. Therefore, this research's primary focus is synthesizing biosurfactant-mediated CuO NPs, integrating them into natural and synthetic fabrics such as cotton and polypropylene and evaluating the resulting fabrics' antimicrobial activity. Using rhamnolipid (RL) as a biosurfactant and employing a hydrothermal method with a pH range of 9-11, RL-capped CuO NPs are synthesized (RL-CuO NPs). To assess their effectiveness against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) microorganisms, the RL-CuO NPs are subjected to antibacterial testing. The RL-capped CuO NPs exhibited antimicrobial activity at much lower concentrations than the individual RL, CuO. RL-CuO NPs have shown a minimum inhibitory concentration (MIC) of 1.2 mg ml-1and minimum bactericidal concentration (MBC) of 1.6 mg ml-1forE. coliand a MIC of 0.8 mg ml-1and a MBC of 1.2 mg ml-1forS. aureus, respectively. Furthermore, the developed RL-CuO NPs are incorporated into cotton and polypropylene fabrics using a screen-printing technique. Subsequently, the antimicrobial activity of the coated fabrics is evaluated, revealing that RL-CuO NPs coated fabrics exhibited remarkable antibacterial properties against both gram-positive and gram-negative bacteria.
Collapse
Affiliation(s)
- P Haripriya
- Department of Sciences, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - M P Revathy
- Department of Sciences, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Megha S Kumar
- Department of Sciences, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Biosensor Research Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - P Navaneeth
- Department of Sciences, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Biosensor Research Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - P V Suneesh
- Department of Sciences, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Biosensor Research Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Satheesh Babu T G
- Department of Sciences, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Biosensor Research Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Venkata Ravi Kumar Darbha
- Department of Sciences, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Biosensor Research Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| |
Collapse
|
6
|
Li C, Zhang Y, Ye Z, Bell SEJ, Xu Y. Combining surface-accessible Ag and Au colloidal nanomaterials with SERS for in situ analysis of molecule-metal interactions in complex solution environments. Nat Protoc 2023; 18:2717-2744. [PMID: 37495750 DOI: 10.1038/s41596-023-00851-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/03/2023] [Indexed: 07/28/2023]
Abstract
The interactions between molecules and noble metal nanosurfaces play a central role in many areas of nanotechnology. The surface chemistry of noble metal surfaces under ideal, clean conditions has been extensively studied; however, clean conditions are seldom met in real-world applications. We developed a sensitive and robust characterization technique for probing the surface chemistry of nanomaterials in the complex environments that are directly relevant to their applications. Surface-enhanced Raman spectroscopy (SERS) can be used to probe the interaction of plasmonic nanoparticles with light to enhance the Raman signals of molecules near the surface of nanoparticles. Here, we explain how to couple SERS with surface-accessible plasmonic-enhancing substrates, which are capped with weakly adsorbing capping ligands such as citrate and chloride ions, to allow molecule-metal interactions to be probed in situ and in real time, thus providing information on the surface orientation and the formation and breaking of chemical bonds. The procedure covers the synthesis and characterization of surface-accessible colloids, the preliminary SERS screening with agglomerated colloids, the synthesis and characterization of interfacial nanoparticle assemblies, termed metal liquid-like films, and the in situ biphasic SERS analysis with metal liquid-like films. The applications of the approach are illustrated using two examples: the probing of π-metal interactions and that of target/ligand-particle interactions on hollow bimetallic nanostars. This protocol, from the initial synthesis of the surface-accessible plasmonic nanoparticles to the final in situ biphasic SERS analysis, requires ~14 h and is ideally suited to users with basic knowledge in performing Raman spectroscopy and wet synthesis of metal nanoparticles.
Collapse
Affiliation(s)
- Chunchun Li
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
- Institute of Photochemistry and Photofunctional Materials, University of Shanghai for Science and Technology, Shanghai, China
| | - Yingrui Zhang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - Ziwei Ye
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, China
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK.
| | - Yikai Xu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK.
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, China.
| |
Collapse
|
7
|
Yao C, Hu F, Zhu J, Shen Y, Xie A. Fabrication of porous ZnO/Co 3O 4 nanohybrids for the application of surface enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121921. [PMID: 36174405 DOI: 10.1016/j.saa.2022.121921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
With the growing use of various pesticides, it is important to develop facile and sensitive method to detect pesticides residues in food. Here, a semiconductor/magnetic hybrid material was used as surface enhanced Raman scattering (SERS) substrate to detect simulated residues. The representative sample of porous ZnO/Co3O4 nano-cube was fabricated by pyrolysis and calcination of Zn-Co ZIF, successively. The obtained hybrid of ZnO/Co3O4 was employed as substrate to detect of crystal violet (CV) and Rhodamine B (Rh B), and showed remarkable SERS performance. The detection limit of Rh B was 1 × 10-10 M as well as CV of 1 × 10-9 M. The results indicated that it was an ideal choice to improve the SERS property of transition metal oxide substrates by doping semiconductor. The semiconductor/magnetic hybrid material highlighted the obvious characteristics of low cost, facile preparation and ultra-low detection limit in the SERS measurements. The hybrids with the combination of semiconductor/magnetic properties showed a further widely application and development in SERS detection of pesticides residues.
Collapse
Affiliation(s)
- Chengli Yao
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, PR China; School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Fangwei Hu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Jinmiao Zhu
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, PR China
| | - Yuhua Shen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China.
| | - Anjian Xie
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
8
|
Dai P, Li H, Huang X, Wang N, Zhu L. Highly Sensitive and Stable Copper-Based SERS Chips Prepared by a Chemical Reduction Method. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2770. [PMID: 34685206 PMCID: PMC8541386 DOI: 10.3390/nano11102770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Cu chips are cheaper than Ag and Au chips for practical SERS applications. However, copper substrates generally have weak SERS enhancement effects and poor stability. In the present work, Cu-based SERS chips with high sensitivity and stability were developed by a chemical reduction method. In the preparation process, Cu NPs were densely deposited onto fabric supports. The as-prepared Cu-coated fabric was hydrophobic with fairly good SERS performance. The Cu-coated fabric was able to be used as a SERS chip to detect crystal violet, and it exhibited an enhancement factor of 2.0 × 106 and gave a limit of detection (LOD) as low as 10-8 M. The hydrophobicity of the Cu membrane on the fabric is favorable to cleaning background interference signals and promoting the stability of Cu NPs to environment oxidation. However, this Cu SERS chip was still poor in its long-term stability. The SERS intensity on the chip was decreased to 18% of the original one after it was stored in air for 60 days. A simple introduction of Ag onto the clean Cu surface was achieved by a replacement reaction to further enhance the SERS performances of the Cu chips. The Ag-modified Cu chips showed an increase of the enhancement factor to 7.6 × 106 due to the plasmonic coupling between Cu and Ag in nanoscale, and decreased the LOD of CV to 10-11 M by three orders of magnitude. Owing to the additional protection of Ag shell, the SERS intensity of the Cu-Ag chip after a two-month storing maintained 80% of the original intensity. The Cu-Ag SERS chips were also applied to detect other organics, and showing wide linearity range and low LOD values for the quantitative detection.
Collapse
Affiliation(s)
| | | | | | | | - Lihua Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (P.D.); (H.L.); (X.H.); (N.W.)
| |
Collapse
|
9
|
Biosurfactant-mediated biosynthesis of CuO nanoparticles and their antimicrobial activity. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01766-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|