1
|
Hu Z, Li H, Yu H. Study on the performance and mechanism of a p-n type In 2O 3/BiOCl heterojunction prepared using a sacrificial MOF framework for the degradation of PFOA. RSC Adv 2025; 15:15029-15051. [PMID: 40343320 PMCID: PMC12060136 DOI: 10.1039/d5ra01317h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
In this study, an In2O3/BiOCl p-n heterojunction was prepared using a co-calcination method. By utilising the built-in electric field formed near the heterojunction interface, photoinduced electron-hole pairs can be effectively separated, thereby enhancing the photocatalytic activity of the photocatalyst. Experimental results indicate that the p-n heterojunction photocatalyst significantly enhanced photocatalytic activity in the degradation of PFOA under UV light irradiation. Within 2 h, the defluorination rate of PFOA achieved by the heterojunction photocatalyst reached 84.01%, while the pure BiOCl and In2O3 photocatalysts exhibit defluorination rates of 61.82% and 56.69%, respectively. The degradation mechanism of PFOA was studied through free radical capture experiments, VB-XPS, FT-IR, and LC-MS. Mechanistic studies show that the main active substances in the heterojunction are holes (h+) and superoxide radicals (˙O2 -). The holes in the valence band of In2O3 are transferred to BiOCl under the effect of the built-in electric field, and the defluorination of PFOA mainly occurs on the BiOCl component of the heterojunction. This highlights the superiority of heterojunctions over pure photocatalysts in terms of their photocatalytic efficiency and provides insights into the photocatalytic degradation mechanism of PFOA.
Collapse
Affiliation(s)
- Zhen Hu
- a, School of Chemical Engineering, Sichuan University of Science & Engineering Sichuan P. R. China
| | - He Li
- a, School of Chemical Engineering, Sichuan University of Science & Engineering Sichuan P. R. China
| | - Hailian Yu
- a, School of Chemical Engineering, Sichuan University of Science & Engineering Sichuan P. R. China
| |
Collapse
|
2
|
Juve JMA, Donoso Reece JA, Wong MS, Wei Z, Ateia M. Photocatalysts for chemical-free PFOA degradation - What we know and where we go from here? JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132651. [PMID: 37827098 DOI: 10.1016/j.jhazmat.2023.132651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a toxic and recalcitrant perfluoroalkyl substance commonly detected in the environment. Its low concentration challenges the development of effective degradation techniques, which demands intensive chemical and energy consumption. The recent stringent health advisories and the upgrowth and advances in photocatalytic technologies claim the need to evaluate and compare the state-of-the-art. Among these systems, chemical-free photocatalysis emerges as a cost-effective and sustainable solution for PFOA degradation and potentially other perfluorinated carboxylic acids. This review (I) classifies the state-of-the-art of chemical-free photocatalysts for PFOA degradation in families of materials (Ti, Fe, In, Ga, Bi, Si, and BN), (II) describes the evolution of catalysts, identifies and discusses the strategies to enhance their performance, (III) proposes a simplified cost evaluation tool for simple techno-economical analysis of the materials; (IV) compares the features of the catalysts expanding the classic degradation focus to other essential parameters, and (V) identifies current research gaps and future research opportunities to enhance the photocatalyst performance. We aim that this critical review will assist researchers and practitioners to develop rational photocatalyst designs and identify research gaps for green and effective PFAS degradation.
Collapse
Affiliation(s)
- Jan-Max Arana Juve
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Juan A Donoso Reece
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Michael S Wong
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark.
| | - Mohamed Ateia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA; Center for Environmental Solutions & Emergency Response, US Environmental Protection Agency, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Song G, Wu X. Flower-Like ZnFe2O4/BiOCl Microspheres with Highly Exposed (001) Facet for Photocatalytic Reduction of CO2 in Cyclohexanol. Catal Letters 2022. [DOI: 10.1007/s10562-022-04031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Sharma N, Pap Z, Kornélia B, Gyulavari T, Karacs G, Nemeth Z, Garg S, Hernadi K. Effective removal of phenol by activated charcoal/BiOCl composite under UV light irradiation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Modification of hollow BiOCl/TiO2 nanotubes with phosphoric acid to enhance their photocatalytic performance. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0997-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
3-Mercaptopropionic acid assisted in-situ construction of thin Bi2S3/BiOCl composites with significantly improved photocatalytic activity. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Yang C, He Y, Zhong J, Li J. Photocatalytic performance of rich OVs-BiOCl modified by polyphenylene sulfide. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Aziz KHH, Miessner H, Mahyar A, Mueller S, Moeller D, Mustafa F, Omer KM. Degradation of perfluorosurfactant in aqueous solution using non-thermal plasma generated by nano-second pulse corona discharge reactor. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103366] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Yao L, Yang H, Chen Z, Qiu M, Hu B, Wang X. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. CHEMOSPHERE 2021; 273:128576. [DOI: doi.org/10.1016/j.chemosphere.2020.128576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
10
|
Yao L, Yang H, Chen Z, Qiu M, Hu B, Wang X. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. CHEMOSPHERE 2020; 273:128576. [PMID: 34756376 DOI: 10.1016/j.chemosphere.2020.128576] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 05/07/2023]
Abstract
Various kind of organics are toxic and detrimental, resulting in eutrophication, black, odorous water and so on. Photocatalysis has been deemed to be a promising technology which can decompose different kinds of organic pollutants under visible light irradiation, finally achieving non-poisonous, harmless CO2, water and other inorganic materials. Bismuth oxychloride (BiOCl) is considered as a promising photocatalyst for the efficient degradation of organic pollutants due to its high chemical stability, unique layered structure, resistance to corrosion and favorable photocatalytic property. However, BiOCl can only absorb UV irradiation because of its wide band gap of 3.2 eV-3.5 eV that limits its photocatalytic performance. Herein, a lot of methods have been reviewed to improve its photocatalytic activity. We introduced the unique and special layered structure of BiOCl, the typical and common synthesis methods that can control the morphology, and the most important part is varies of modification routes of BiOCl and the application of BiOCl-based materials for photocatalytic degradation of organic pollutants. Besides, we summarized the crucial issues and perspectives about the application of BiOCl in pollution management.
Collapse
Affiliation(s)
- Ling Yao
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China; Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Hui Yang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Zhongshan Chen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China.
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China.
| |
Collapse
|
11
|
Tunable Synthesis of Ultrathin BiOCl 2D Nanosheets for Efficient Photocatalytic Degradation of Carbamazepine upon Visible-Light Irradiation. J CHEM-NY 2020. [DOI: 10.1155/2020/1950645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of ultrathin BiOCl 2D nanosheet photocatalysts were prepared by the TBAOH-assisted hydrolysis method in water. The effects of tetrabutylammonium hydroxide (TBAOH) dosages, chlorine source, preparation pH value, ultrasonic treatment, and magnetic stirring on the photocatalytic degradation dynamics of carbamazepine were examined under visible-light irradiation to optimize the preparation parameters. It was found that ultrathin BiOCl prepared with TBAOH dosages of 1 mmol and chlorine source of NaCl in the pH of 2 upon magnetic stirring of 6 h displayed the highest photocatalytic degradation rate constant (0.0038 min−1) of carbamazepine, which is 7.6 times higher than that with the ordinary BiOCl (without TBAOH). To clarify the mechanism on the outstanding photocatalytic activity of ultrathin BiOCl, the elemental composition/state, micromorphology, and separation efficiency of photogenerated electron-hole pairs were investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and photoluminescence (PL). Results showed that the presence of oxygen vacancy, ultrathin nanosheet structure, and improved separation efficiency of photogenerated electron-hole pairs contributed to the excellent photocatalytic degradation activity of ultrathin BiOCl. The obtained result provides a novel method to fabricate ultrathin BiOCl with excellent photocatalytic degradation activity of carbamazepine under visible-light irradiation.
Collapse
|