1
|
Sun Y, Yang M, Liu T, Ying J, Tian A, Wang X. Four multi-stimuli-responsive color-changing materials based on Anderson-viologens for erasable inkless printing, UV detectors and gradient detection of amine gases. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125826. [PMID: 39908974 DOI: 10.1016/j.saa.2025.125826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Multi-stimuli-responsive materials have garnered widespread attention due to their exceptional potential in various applications, including optical anti-counterfeiting devices, sensor technology, and information storage materials. In this study, we demonstrate the synthesis of four polyoxometalates/viologens (POMs/Vios)-based compounds featuring remarkable color-changing performance, namely, [Zn6(HL)2(H2O)20(TeMo6O24)3]·6H2O (1), [Co6(HL)2(H2O)20(TeMo6O24)3]·4H2O (2), [Zn(TeMo6O24)(H2O)2]·L2·6H2O (3), [Co(TeMo6O24)(H2O)2]·L2·6H2O (4) (L·Cl2 = 1,1'-[1,3-phenylenebis(methylene)] bis-(4,4'-bipyridine) dichloride). Compounds 1, 3, and 4 exhibit rapid and reversible photochromic properties, making them suitable for applications in erasable inkless printing and information storage. Furthermore, hydrogels based on these compounds can act as ultraviolet detectors. An innovative electrochromic (EC) hydrogel can be prepared by incorporating compounds 1-4 into polyacrylamide (PAAm). The integrated electrochromic devices (ECDs) based on EC hydrogel can precisely switch between the coloring and fading states through the precise control of different voltages. They are characterized by simple operation, high sensitivity, and low-voltage drive (ranging from -0.21 to -0.35 V). Additionally, compounds 1-4 act as highly efficient organic amine gas sensors. This work is anticipated to provide inspiration for the systematic design and development of diverse color-changing materials that respond to multiple external stimuli.
Collapse
Affiliation(s)
- Yuzhu Sun
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013 PR. China
| | - Mengle Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013 PR. China
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan Hebei 063210, China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013 PR. China.
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013 PR. China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013 PR. China.
| |
Collapse
|
2
|
Guo S, Zhu R, Chen J, Liu W, Zhang Y, Li J, Li H. MXene-based all-solid flexible electrochromic microsupercapacitor. MICROSYSTEMS & NANOENGINEERING 2024; 10:89. [PMID: 38919161 PMCID: PMC11196698 DOI: 10.1038/s41378-024-00720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024]
Abstract
With the increasing demand for multifunctional optoelectronic devices, flexible electrochromic energy storage devices are being widely recognized as promising platforms for diverse applications. However, simultaneously achieving high capacitance, fast color switching and large optical modulation range is very challenging. In this study, the MXene-based flexible in-plane microsupercapacitor was fabricated via a mask-assisted spray coating approach. By adding electrochromic ethyl viologen dibromide (EVB) into the electrolyte, the device showed a reversible color change during the charge/discharge process. Due to the high electronic conductivity of the MXene flakes and the fast response kinetics of EVB, the device exhibited a fast coloration/bleaching time of 2.6 s/2.5 s, a large optical contrast of 60%, and exceptional coloration efficiency. In addition, EVB acted as a redox additive to reinforce the energy storage performance; as a result, the working voltage window of the Ti3C2-based symmetric aqueous microsupercapacitor was extended to 1 V. Moreover, the device had a high areal capacitance of 12.5 mF cm-2 with superior flexibility and mechanical stability and showed almost 100% capacitance retention after 100 bending cycles. The as-prepared device has significant potential for a wide range of applications in flexible and wearable electronics, particularly in the fields of camouflage, anticounterfeiting, and displays.
Collapse
Affiliation(s)
- Shanlu Guo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
| | - Ruihe Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
| | - Jingwei Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100 China
| | - Weilin Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
| | - Yuxiang Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
| | - Jianmin Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
| | - Haizeng Li
- Optics and Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518000 China
- State Key Laboratory of Featured Metal Materials and Life Cycle Safety for Composite Structures, Guangxi University, Nanning, 530004 China
| |
Collapse
|
3
|
Koomson DA, Nicholson JH, Brogan APS, Aldous L. Re-assessing viologens for modern bio-electrocatalysis. Chem Sci 2024; 15:9325-9332. [PMID: 38903224 PMCID: PMC11186337 DOI: 10.1039/d4sc02431a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Viologens, 1,1'-disubstituted-4,4'-bipyridinium salts, are organic redox species that can be used in place of NADPH as mediators for redox enzymes. In this study, using the reduction of oxidized glutathione by glutathione reductase as a model system, a rationally designed library of viologens covering a range of polarities and functional groups were explored as electron transfer mediators for bio-electrocatalysis. Through a series of electrochemical investigations, the reduction potential was found to be the primary determining factor for electron transfer between the viologen and enzyme. Through enhancing the solubility of viologen such that the fully reduced state remained soluble, we demonstrate a much-widened window of useable viologen potentials. In doing so, we describe for the first time a highly efficient electron transfer to a flavoenzyme promoting the catalytic reaction in the absence of co-factors. As such, our study provides a platform for broadening the scope for using viologens as mediating agents for electrochemically-driven enzymatic processes.
Collapse
Affiliation(s)
- Desmond Ato Koomson
- Department of Chemistry, King's College London Britannia House London SE1 1DB UK
| | - Jake H Nicholson
- Department of Chemistry, King's College London Britannia House London SE1 1DB UK
| | - Alex P S Brogan
- Department of Chemistry, King's College London Britannia House London SE1 1DB UK
| | - Leigh Aldous
- Department of Chemistry, King's College London Britannia House London SE1 1DB UK
| |
Collapse
|
4
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
5
|
Wang P, Qian C, Guo X, Jiang C, Liu P. Flexible Composite Electrochromic Device with Long-Term Bistability Based on a Viologen Derivative and Prussian Blue. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2522-2529. [PMID: 38166192 DOI: 10.1021/acsami.3c16142] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Viologen and Prussian blue (PB) exhibit good electrochromic properties, but certain limitations still exist. To improve the electrochromic properties of viologen, a viologen derivative 1,1'-bis(4-(bromomethyl)benzyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate (BBDV) was synthesized, and its electrochromic properties were investigated. Additionally, a flexible composite electrochromic device (FC-ECD) was prepared by using BBDV and PB as active materials. The structure of the FC-ECD was PET-ITO/gel electrolyte-BBDV/PB/PET-ITO. The applied voltage required for the FC-ECD was found to be lower than that of the ECD based on BBDV(FBBDV-ECD). Compared to FBBDV-ECD, FC-ECD exhibited a higher optical contrast (71.42%) and cyclic stability (89.51%). The FC-ECD exhibited multicolor changes under different applied voltages (ranging from -2.0 to +1.6 V). Especially, the color of the FC-ECD remained stable for 14 h after the removal of the applied voltage.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Luminescent Materials and Devices, Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| | - Chao Qian
- State Key Laboratory of Luminescent Materials and Devices, Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| | - Xu Guo
- State Key Laboratory of Luminescent Materials and Devices, Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| | - Chuanyu Jiang
- Zhuhai Kaivo Optoelectronic Technology Co., Ltd, Zhuhai 519000, China
| | - Ping Liu
- State Key Laboratory of Luminescent Materials and Devices, Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Wu X, Fan Q, Bai Z, Zhang Q, Jiang W, Li Y, Hou C, Li K, Wang H. Synergistic Interaction of Dual-Polymer Networks Containing Viologens-Anchored Poly(ionic liquid)s Enabling Long-Life and Large-Area Electrochromic Organogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301742. [PMID: 37140104 DOI: 10.1002/smll.202301742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/07/2023] [Indexed: 05/05/2023]
Abstract
Viologens-based electrochromic (EC) devices with multiple color changes, rapid response time, and simple all-in-one architecture have aroused much attention, yet suffer from poor redox stability caused by the irreversible aggregation of free radical viologens. Herein, the semi-interpenetrating dual-polymer network (DPN) organogels are introduced to improve the cycling stability of viologens-based EC devices. The primary cross-linked poly(ionic liquid)s (PILs) covalently anchored with viologens can suppress irreversible face-to-face contact between radical viologens. The secondary poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) chains with strong polar groups of -F can not only synergistically confine the viologens by the strong electrostatic effect, but also improve the mechanical performance of the organogels. Consequently, the DPN organogels show excellent cycling stability (87.5% retention after 10 000 cycles) and mechanical flexibility (strength of 3.67 MPa and elongation of 280%). Three types of alkenyl viologens are designed to obtain blue, green, and magenta colors, demonstrating the universality of the DPN strategy. Large-area EC devices (20 × 30 cm) and EC fibers based on organogels are assembled to demonstrate promising applications in green and energy-saving buildings and wearable electronics.
Collapse
Affiliation(s)
- Xilu Wu
- College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Qingchao Fan
- College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Zhiyuan Bai
- College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghong Zhang
- College of Materials Science and Engineering, Engineering Research Center of Advanced Glasses Manufacturing Technology, Donghua University, Shanghai, 201620, P. R. China
| | - Weizhong Jiang
- College of Materials Science and Engineering, Engineering Research Center of Advanced Glasses Manufacturing Technology, Donghua University, Shanghai, 201620, P. R. China
| | - Yaogang Li
- College of Materials Science and Engineering, Engineering Research Center of Advanced Glasses Manufacturing Technology, Donghua University, Shanghai, 201620, P. R. China
| | - Chengyi Hou
- College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Kerui Li
- College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Hongzhi Wang
- College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
7
|
Yu S, Ying J, Tian A. Applications of Viologens in Organic and Inorganic Discoloration Materials. Chempluschem 2022; 87:e202200171. [PMID: 35876415 DOI: 10.1002/cplu.202200171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/02/2022] [Indexed: 11/06/2022]
Abstract
Viologen derived from 4,4'-bipyridine has attracted much attention because of its color changing properties with electron transfer, unique redox stability and structural diversity. These characteristics have led to its successful use in various applications, in particular in color-changing materials. In the past few years, researchers have been working on the syntheses of viologen-based color-changing functional materials, and such materials have been widely used in many fields. In photochromic materials, it is used as anti-counterfeiting material; in thermochromic, it is used as memory storage material, and in electrochromic, it is used as a battery material. This Review discusses the progress of viologen in organic and inorganic discoloration materials in recent years. The syntheses of viologen and its derivatives are summarized, and its application in the field of discoloration materials is introduced.
Collapse
Affiliation(s)
- Shuang Yu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
8
|
Ievlev MY, Mayorov NS, Shishlikova MA, Belikov MY, Bardasov IN, Ershov OV. Facile Synthesis and Spectral Properties of Novel Isomeric Nitrile-Rich Bipyridine Derivatives. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03021-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Kim KW, Kim YM, Li X, Ha T, Kim SH, Moon HC, Lee SW. Various Coating Methodologies of WO 3 According to the Purpose for Electrochromic Devices. NANOMATERIALS 2020; 10:nano10050821. [PMID: 32344874 PMCID: PMC7711473 DOI: 10.3390/nano10050821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022]
Abstract
Solution-processable electrochromic (EC) materials have been investigated widely for various applications, such as smart windows, reflective displays, and sensors. Among them, tungsten trioxide (WO3) is an attractive material because it can form a film via a solution process and relative low temperature treatment, which is suitable for a range of substrates. This paper introduces the slot-die and electrostatic force-assisted dispensing (EFAD) printing for solution-processable methods of WO3 film fabrication. The resulting films were compared with WO3 films prepared by spin coating. Both films exhibited a similar morphology and crystalline structure. Furthermore, three different processed WO3 film-based electrochromic devices (ECDs) were prepared and exhibited similar device behaviors. In addition, large area (100 cm2) and patterned ECDs were fabricated using slot-die and EFAD printing. Consequently, slot-die and EFAD printing can be used to commercialize WO3 based-ECDs applications, such as smart windows and reflective displays.
Collapse
Affiliation(s)
- Keon-Woo Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Yong Min Kim
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Korea
| | - Xinlin Li
- College of Electromechanical Engineering, Qingdao University, Qingdao 266071, China
| | - Taehwa Ha
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Se Hyun Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
- Correspondence: (S.H.K.); (H.C.M.); (S.W.L.)
| | - Hong Chul Moon
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Korea
- Correspondence: (S.H.K.); (H.C.M.); (S.W.L.)
| | - Seung Woo Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
- Correspondence: (S.H.K.); (H.C.M.); (S.W.L.)
| |
Collapse
|