1
|
Prospects and Technical Challenges in Hydrogen Production through Dry Reforming of Methane. Catalysts 2022. [DOI: 10.3390/catal12040363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Environmental issues related to greenhouse gases (GHG) emissions have pushed the development of new technologies that will allow the economic production of low-carbon energy vectors, such as hydrogen (H2), methane (CH4) and liquid fuels. Dry reforming of methane (DRM) has gained increased attention since it uses CH4 and carbon dioxide (CO2), which are two main greenhouse gases (GHG), as feedstock for the production of syngas, which is a mixture of H2 and carbon monoxide (CO) and can be used as a building block for the production of fuels. Since H2 has been identified as a key enabler of the energy transition, a lot of studies have aimed to benefit from the environmental advantages of DRM and to use it as a pathway for a sustainable H2 production. However, there are several challenges related to this process and to its use for H2 production, such as catalyst deactivation and the low H2/CO ratio of the syngas produced, which is usually below 1.0. This paper presents the recent advances in the catalyst development for H2 production via DRM, the processes that could be combined with DRM to overcome these challenges and the current industrial processes using DRM. The objective is to assess in which conditions DRM could be used for H2 production and the gaps in literature data preventing better evaluation of the environmental and economic potential of this process.
Collapse
|
2
|
Torimoto M, Sekine Y. Effects of alloying for steam or dry reforming of methane: a review of recent studies. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00066k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A survey on the catalytic nature of Ni-based alloy catalysts in recent years provides a direction for future catalyst development.
Collapse
Affiliation(s)
- Maki Torimoto
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yasushi Sekine
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
3
|
Pérez JMM, Lucio‐Ortiz CJ, Rosa JR, Maldonado CS, De Haro Del Río DA, Sandoval‐Rangel L, Garza‐Navarro MA, Martínez‐Vargas DX, Morales‐Leal FJ. Dry Reforming of Methane for Hydrogen Production Using Bimetallic Catalysts of Pt‐Fe Supported on γ‐Alumina. ChemistrySelect 2021. [DOI: 10.1002/slct.202102877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- José Manuel Martínez Pérez
- Universidad Autónoma de Nuevo León Facultad de Ciencias Químicas Ave. Universidad S/N Cd. Universitaria, C.P. 66455 San Nicolás de los Garza N.L. México
| | - Carlos J. Lucio‐Ortiz
- Universidad Autónoma de Nuevo León Facultad de Ciencias Químicas Ave. Universidad S/N Cd. Universitaria, C.P. 66455 San Nicolás de los Garza N.L. México
| | - Javier Rivera Rosa
- Universidad Autónoma de Nuevo León Facultad de Ciencias Químicas Ave. Universidad S/N Cd. Universitaria, C.P. 66455 San Nicolás de los Garza N.L. México
| | - Carolina Solis Maldonado
- Universidad Veracruzana Facultad de Ciencias Químicas Av. Venustiano Carranza S/N Col. Revolución, C. P. 93390 Poza Rica, Veracruz México
| | - David A. De Haro Del Río
- Universidad Autónoma de Nuevo León Facultad de Ciencias Químicas Ave. Universidad S/N Cd. Universitaria, C.P. 66455 San Nicolás de los Garza N.L. México
| | - Ladislao Sandoval‐Rangel
- Tecnológico de Monterrey Escuela de Ingeniería y Ciencias Ave. Eugenio Garza Sada 2501, C.P. 64849 Monterrey N.L., México
| | - M. A. Garza‐Navarro
- Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica Av. Universidad S/N Cd. Universitaria, C.P. 64455 San Nicolás de los Garza N.L., México
| | | | - Francisco José Morales‐Leal
- Instituto Mexicano del Petróleo Eje Central Lázaro Cárdenas Norte 152 Col. San Bartolo Atepehuacan, C.P. 07730 Gustavo A. Madero, Ciudad de México México
| |
Collapse
|
5
|
Cortez-Elizalde J, Cuauhtémoc-López I, Guerra-Que Z, Espinosa de los Monteros AE, Lunagómez-Rocha MA, Silahua-Pavón AA, Arévalo-Pérez JC, Cordero-García A, Cervantes-Uribe A, Torres-Torres JG. Chemical and Structural Changes by Gold Addition Using Recharge Method in NiW/Al 2O 3-CeO 2-TiO 2 Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5470. [PMID: 34639867 PMCID: PMC8509746 DOI: 10.3390/ma14195470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022]
Abstract
NiWAu trimetallic nanoparticles (NPs) on the surface of support Al2O3-CeO2-TiO2 were synthesized by a three-step synthetic method in which Au NPs were incorporated into presynthesized NiW/Al2O3-CeO2-TiO2. The recharge method, also known as the redox method, was used to add 2.5 wt% gold. The Al2O3-CeO2-TiO2 support was made by a sol-gel method with two different compositions, and then two metals were simultaneously loaded (5 wt% nickel and 2.5 wt% tungsten) by two different methods, incipient wet impregnation and ultrasound impregnation method. In this paper, we study the effect of Au addition using the recharge method on NiW nanomaterials supported on mixed oxides on the physicochemical properties of synthesized nanomaterials. The prepared nanomaterials were characterized by scanning electron microscopy, BET specific surface area, X-ray diffraction, diffuse reflectance spectroscopy in the UV-visible range and temperature-programmed desorption of hydrogen. The experimental results showed that after loading of gold, the dispersion was higher (46% and 50%) with the trimetallic nanomaterials synthesized by incipient wet impregnation plus recharge method than with impregnation plus ultrasound recharge method, indicating a greater number of active trimetallic (NiWAu) sites in these materials. Small-sized Au from NiWAu/ACTU1 trimetallic nanostructures was enlarged for NiWAu/ACT1. The strong metal NPs-support interaction shown for the formation of NiAl2O4, Ni-W-O and Ni-Au-O species simultaneously present in the surface of trimetallic nanomaterial probably plays an important role in the degree of dispersion of the gold active phase.
Collapse
Affiliation(s)
- Jorge Cortez-Elizalde
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuen-tes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, DACB, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cun-duacán 86690, Tabasco, Mexico; (J.C.-E.); (I.C.-L.); (A.E.E.d.l.M.); (M.A.L.-R.); (A.A.S.-P.); (J.C.A.-P.); (A.C.-G.); (A.C.-U.)
| | - Ignacio Cuauhtémoc-López
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuen-tes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, DACB, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cun-duacán 86690, Tabasco, Mexico; (J.C.-E.); (I.C.-L.); (A.E.E.d.l.M.); (M.A.L.-R.); (A.A.S.-P.); (J.C.A.-P.); (A.C.-G.); (A.C.-U.)
| | - Zenaida Guerra-Que
- Laboratorio de Investigación 1 Área de Nano-Tecnología, Tecnológico Nacional de México Campus Villahermosa, Km. 3.5 Carretera Villahermosa–Frontera, Cd. Industrial, Villahermosa 86010, Tabasco, Mexico;
| | - Alejandra Elvira Espinosa de los Monteros
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuen-tes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, DACB, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cun-duacán 86690, Tabasco, Mexico; (J.C.-E.); (I.C.-L.); (A.E.E.d.l.M.); (M.A.L.-R.); (A.A.S.-P.); (J.C.A.-P.); (A.C.-G.); (A.C.-U.)
| | - Ma. Antonia Lunagómez-Rocha
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuen-tes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, DACB, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cun-duacán 86690, Tabasco, Mexico; (J.C.-E.); (I.C.-L.); (A.E.E.d.l.M.); (M.A.L.-R.); (A.A.S.-P.); (J.C.A.-P.); (A.C.-G.); (A.C.-U.)
| | - Adib Abiu Silahua-Pavón
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuen-tes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, DACB, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cun-duacán 86690, Tabasco, Mexico; (J.C.-E.); (I.C.-L.); (A.E.E.d.l.M.); (M.A.L.-R.); (A.A.S.-P.); (J.C.A.-P.); (A.C.-G.); (A.C.-U.)
| | - Juan Carlos Arévalo-Pérez
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuen-tes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, DACB, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cun-duacán 86690, Tabasco, Mexico; (J.C.-E.); (I.C.-L.); (A.E.E.d.l.M.); (M.A.L.-R.); (A.A.S.-P.); (J.C.A.-P.); (A.C.-G.); (A.C.-U.)
| | - Adrián Cordero-García
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuen-tes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, DACB, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cun-duacán 86690, Tabasco, Mexico; (J.C.-E.); (I.C.-L.); (A.E.E.d.l.M.); (M.A.L.-R.); (A.A.S.-P.); (J.C.A.-P.); (A.C.-G.); (A.C.-U.)
| | - Adrián Cervantes-Uribe
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuen-tes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, DACB, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cun-duacán 86690, Tabasco, Mexico; (J.C.-E.); (I.C.-L.); (A.E.E.d.l.M.); (M.A.L.-R.); (A.A.S.-P.); (J.C.A.-P.); (A.C.-G.); (A.C.-U.)
| | - José Gilberto Torres-Torres
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuen-tes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, DACB, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cun-duacán 86690, Tabasco, Mexico; (J.C.-E.); (I.C.-L.); (A.E.E.d.l.M.); (M.A.L.-R.); (A.A.S.-P.); (J.C.A.-P.); (A.C.-G.); (A.C.-U.)
| |
Collapse
|
6
|
Cheng F, Duan X, Xie K. Dry Reforming of CH 4 /CO 2 by Stable Ni Nanocrystals on Porous Single-Crystalline MgO Monoliths at Reduced Temperature. Angew Chem Int Ed Engl 2021; 60:18792-18799. [PMID: 34101335 DOI: 10.1002/anie.202106243] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/06/2021] [Indexed: 11/05/2022]
Abstract
Dry reforming of CH4 /CO2 provides a promising and economically feasible route for the large-scale carbon fixation; however, the coking and sintering of catalysts remain a fundamental challenge. Here we stabilize single-crystalline Ni nanoparticles at the surface of porous single-crystalline MgO monoliths and show the quantitative production of syngas from dry reforming of CH4 /CO2 . We show the complete conversion of CH4 /CO2 even only at 700 °C with excellent performance durability after a continuous operation of 500 hours. The well-defined and catalytically active Ni-MgO interfaces facilitate the reforming reaction and enhance the coking resistance. Our findings would enable an industrially and economically viable path for carbon reclamation, and the "Nanocrystal On Porous Single-crystalline Monoliths" technique could lead to stable catalyst designs for many challenging reactions.
Collapse
Affiliation(s)
- Fangyuan Cheng
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuyun Duan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
7
|
Cheng F, Duan X, Xie K. Dry Reforming of CH
4
/CO
2
by Stable Ni Nanocrystals on Porous Single‐Crystalline MgO Monoliths at Reduced Temperature. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Fangyuan Cheng
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiuyun Duan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Key Laboratory of Design & Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|