1
|
Sun K, Nguyen CV, Nguyen NN, Ma X, Nguyen AV. Crucial roles of ion-specific effects in the flotation of water-soluble KCl and NaCl crystals with fatty acid salts. J Colloid Interface Sci 2023; 636:413-424. [PMID: 36640552 DOI: 10.1016/j.jcis.2023.01.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
HYPOTHESIS Flotation of water-soluble KCl and NaCl minerals in brines is significant for K-fertilizer production, but its mechanism is controversial. Dissolved salt ions are expected to change the physicochemical properties of solvents, interfaces, and collector colloids, thereby affecting flotation significantly. EXPERIMENTS Flotation experiments of KCl and NaCl crystals in brines were conducted using potassium and sodium laurates as collectors. Contact angle (CA) and surface tension measurements, X-ray photoelectron spectroscopy (XPS) analysis, and molecular dynamics simulations (MD) were applied to gain a molecular understanding of changing interfacial properties and crystal-collector colloid interactions in the presence of dissolved ions in terms of salt flotation. FINDINGS While K+ ions activate the NaCl crystal flotation, Na+ ions depress the KCl crystal flotation, in agreement with the studies of CA, XPS, and MD results with these crystals. XPS results showed no collector adsorption at crystal surfaces which is a requirement of conventional flotation and presents a new theoretical challenge. We argue the crucial role of ion specificity: Na-laurate colloids adsorb at the bubble surface as a monolayer but solvent-separated from KCl crystals, inhibiting their flotation, or in interactive contact with NaCl crystals, enhancing their flotation. Increasing K+ concentration weakens NaCl crystal hydration, increasing Na-laurate colloid attraction with crystals for better flotation. The Contact Interactive Collector Colloid (CICC) and Solvent-separated Interactive Collector Colloid (SICC) hydration states are critical to salt crystal flotation via collector colloid-crystal attraction by dispersion forces.
Collapse
Affiliation(s)
- Kangkang Sun
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuong V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ngoc N Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiaozhen Ma
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
2
|
Junxi L, Bomiao Q, Mengmeng L, Fupeng Z, Fang R, Zhibin L, Shaofeng P, Shujuan M, Yanbin W, Qiong S. Insights into selectivity of some oxygen containing gases by the CHCl •– anion from molecular simulation. MOLECULAR SIMULATION 2023. [DOI: 10.1080/08927022.2023.2189983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Liang Junxi
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| | - Qi Bomiao
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Lu Mengmeng
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| | - Zhang Fupeng
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| | - Ren Fang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| | - Lu Zhibin
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Pang Shaofeng
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| | - Meng Shujuan
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| | - Wang Yanbin
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| | - Su Qiong
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| |
Collapse
|
3
|
Sun K, Nguyen CV, Nguyen NN, Nguyen AV. Flotation surface chemistry of water-soluble salt minerals: from experimental results to new perspectives. Adv Colloid Interface Sci 2022; 309:102775. [PMID: 36152375 DOI: 10.1016/j.cis.2022.102775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
The flotation separation of water-soluble salt minerals has to be conducted under the condition of saturation in brines which represents a challenging but exciting topic of colloid and surface chemistry. Despite several proposals on explaining the success of this industrial application for many decades, our understanding of the flotation separation is still far from complete yet, owing to the complexity of the highly selective collection of salt crystals by air bubbles in brines. Here, we thoroughly review the experimental results for halogen, oxyanion, and double salts and match them with the proposed theories on the flotation of soluble salts to identify the agreed and disagreed cases. The experimental results show that the flotation of these salts varies from collectors (surfactants applied to control the crystal hydrophobicity) to collectors and is strongly affected by the brine ion composition and pH conditions. We find some exceptional flotation results that cannot be simply explained by the crystal surface charge and wettability. Furthermore, we outline several disputes and discrepancies between the experiments and the theories when different collectors are applied. Apart from the extensive consideration of surface hydration, the presence of external ion species exhibits ubiquitous effects on the surface properties of salt crystals and the colloidal properties of collectors. We conclude that the interactions between salt ions, water molecules, collectors, and salt crystals must be considered more thoroughly, and the activity of collectors at the air-liquid interface should also be the focus. Advanced techniques such as molecular dynamics simulation, atomic force microscopy, X-ray photoelectron spectroscopy, and sum-frequency generation spectroscopy are expected to be promising research tools for future studies.
Collapse
Affiliation(s)
- Kangkang Sun
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuong V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ngoc N Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
4
|
Xie Q, Wang D, Fu D, Tao H, Liu S. Recovery of soluble chlorides from municipal solid waste incineration fly ash using evaporative crystallisation and flotation methods. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2045319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qiaoling Xie
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Separation Technology, Shenzhen, China
| | - Dandan Wang
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Separation Technology, Shenzhen, China
| | - Dongju Fu
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Huchun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, PR China
| | - Sitong Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, PR China
- College of Environmental Science and Engineering, Peking University, Beijing, China
| |
Collapse
|
5
|
Zhang L, Guo J, Xie Z, Li B, Liu S. Micro-mechanism of improving low-rank coal flotation by using carboxylic acid collector: A DFT calculation and MD simulation study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|