1
|
Li H, Lyu M, Chen P, Tian Y, Kang J, Lai Y, Cheng X, Dong Z. Photothermal effect and hole transport properties of polyaniline for enhanced photoelectrochemical water splitting of BiVO 4 photoanode. J Colloid Interface Sci 2025; 684:758-768. [PMID: 39818035 DOI: 10.1016/j.jcis.2025.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
As modification strategies are actively developed, the photothermal effect is expected to be a viable way to enhance the PEC water splitting performance. Herein, we demonstrate that the photothermal polyaniline (PANI) layer inserted between CoF2 cocatalyst and BiVO4 can enhance the photocurrent density of pure BiVO4 by 3.50 times. The coated PANI layer exhibits excellent photothermal conversion and hole transport properties. Under near-infrared (NIR) light irradiation at 808 nm, PANI can raise the temperature of the photoanode in situ, thus promoting bulk charge transfer and broadening the light absorption range. After the CoF2 cocatalyst is deposited on the BiVO4/PANI surface, the water oxidation activity of the composite photoanode is also significantly enhanced due to the temperature elevation. In addition, density-functional theory (DFT) simulations demonstrate that BiVO4/PANI/CoF2 can dramatically reduce the energy barrier required for oxygen evolution reaction, accelerating the oxygen evolution kinetics. Under NIR light irradiation, the meticulously designed BiVO4/PANI/CoF2 (BPC) photoanode displays a photocurrent density of 4.34 mA cm-2 at 1.23 V vs. RHE (VRHE) with an excellent charge injection efficiency of 88.14 %. In addition, at 350 nm, the incident photon-to-current efficiency (IPCE) of the BPC photoanode reaches up to 60.45 %, which is much higher than that of pure BiVO4 (7.75 %). At 0.66 VRHE, the applied bias photon-to-current efficiency (ABPE) value of BPC photoanode can reach 1.37 %, which is 12.5 times higher than that of pure BiVO4. This simple and robust strategy provides a pathway to employ photothermal materials to design PEC water splitting photoanodes with excellent overall performance.
Collapse
Affiliation(s)
- Haolun Li
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Mingxin Lyu
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Pengliang Chen
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yingnan Tian
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jianye Kang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yanhua Lai
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
| | - Xingxing Cheng
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
| | - Zhen Dong
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Zheng H, Ling S, Kong B, Zeng TX, Jiang S, Wang W. Theoretical Investigations on the n-Type and p-Type Conductivity Mechanisms in BiTaO 4 Photocatalysts through Intrinsic Point Defects and Group IIA and Group VIB Element Doping. Inorg Chem 2025; 64:2443-2457. [PMID: 39886750 DOI: 10.1021/acs.inorgchem.4c04888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The n-type and p-type conductivity mechanisms from intrinsic defects and Group IIA and Group VIB element doping in the photocatalyst BiTaO4 are systematically investigated by employing hybrid density functional calculations. The results reveal that vacancies VBi, VTa, VO, and antisite TaBi are the predominant defects, depending on growth conditions. Bi-rich, appropriate Ta-rich, and O-poor conditions can promote BiTaO4 to form n-type conductivity due to the presence of the TaBi donor defect and its easier ionization. This explains the experimental n-type conductivity character well. Meanwhile, under O-rich, Bi-poor, and Ta-poor conditions, BiTaO4 exhibits superior p-type conductivity by forming the excellent acceptor defects VBi and VTa. Moreover, the intrinsic p-type conductivity can be further strengthened via the introductions of the substitutional doping of MBi (M = Mg, Ca, Sr, and Ba) under the Bi-poor, Ta-poor, and O-rich conditions, where the O vacancies should be induced and Sr is the best candidate. On the other hand, Group VIB element (Cr, Mo, and W) doping can improve intrinsic n-type conductivity under Bi-rich, appropriate Ta-rich, and O-poor conditions. W is the best candidate. These findings provide a comprehensive understanding of defect physics in BiTaO4 and offer insights into optimizing its photocatalytic performance through targeted defect engineering and impurity doping.
Collapse
Affiliation(s)
- HongChun Zheng
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Song Ling
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Bo Kong
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Ti-Xian Zeng
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
- Dazhou Industrial Technology Research Institute, Dazhou 635000, China
| | - Shan Jiang
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Wentao Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
3
|
da Silva MP, de Souza ACA, Ferreira ÁRD, do Nascimento PLA, Fraga TJM, Cavalcanti JVFL, Ghislandi MG, da Motta Sobrinho MA. Synthesis of superparamagnetic Fe 3O 4-graphene oxide-based material for the photodegradation of clonazepam. Sci Rep 2024; 14:18916. [PMID: 39143177 PMCID: PMC11324737 DOI: 10.1038/s41598-024-67352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
The global concern over water pollution caused by contaminants of emerging concern has been the subject of several studies due to the complexity of treatment. Here, the synthesis of a graphene oxide-based magnetic material (GO@Fe3O4) produced according to a modified Hummers' method followed by a hydrothermal reaction was proposed; then, its application as a photocatalyst in clonazepam photo-Fenton degradation was investigated. Several characterization analyses were performed to analyze the structure, functionalization and magnetic properties of the composite. A 23 factorial design was used for the optimization procedure to investigate the effect of [H2O2], GO@Fe3O4 dose and pH on clonazepam degradation. Adsorption experiments demonstrated that GO@Fe3O4 could not adsorb clonazepam. Photo-Fenton kinetics showed that total degradation of clonazepam was achieved within 5 min, and the experimental data were better fitted to the PFO model. A comparative study of clonazepam degradation by different processes highlighted that the heterogeneous photo-Fenton process was more efficient than homogeneous processes. The radical scavenging test showed that O 2 · - was the main active free radical in the degradation reaction, followed by hydroxyl radicals (•OH) and holes (h+) in the valence layer; accordingly, a mechanism of degradation was proposed to describe the process.
Collapse
Affiliation(s)
- Maryne Patrícia da Silva
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil.
| | - Ana Caroline Alves de Souza
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Ágata Rodrigues Deodato Ferreira
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Pedro Lucas Araújo do Nascimento
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Tiago José Marques Fraga
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
- Department of Food Science, Federal University of Pernambuco Agreste (UFAPE), Bom Pastor Avenue, W/N, Boa Vista, Garanhuns, PE, 55292-270, Brazil
| | | | - Marcos Gomes Ghislandi
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
- Federal Rural University of Pernambuco (UFRPE), 300 Cento e Sessenta e Três Av., Cabo de Santo Agostinho, PE, Brazil
| | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| |
Collapse
|
4
|
Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing Artificial Photosynthesis with TiO 2 Heterostructures and Hybrids: Emerging Trends in a Classical yet Contemporary Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305285. [PMID: 37818725 DOI: 10.1002/adma.202305285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Titanium dioxide (TiO2) stands out as a versatile transition-metal oxide with applications ranging from energy conversion/storage and environmental remediation to sensors and optoelectronics. While extensively researched for these emerging applications, TiO2 has also achieved commercial success in various fields including paints, inks, pharmaceuticals, food additives, and advanced medicine. Thanks to the tunability of their structural, morphological, optical, and electronic characteristics, TiO2 nanomaterials are among the most researched engineering materials. Besides these inherent advantages, the low cost, low toxicity, and biocompatibility of TiO2 nanomaterials position them as a sustainable choice of functional materials for energy conversion. Although TiO2 is a classical photocatalyst well-known for its structural stability and high surface activity, TiO2-based photocatalysis is still an active area of research particularly in the context of catalyzing artificial photosynthesis. This review provides a comprehensive overview of the latest developments and emerging trends in TiO2 heterostructures and hybrids for artificial photosynthesis. It begins by discussing the common synthesis methods for TiO2 nanomaterials, including hydrothermal synthesis and sol-gel synthesis. It then delves into TiO2 nanomaterials and their photocatalytic mechanisms, highlighting the key advancements that have been made in recent years. The strategies to enhance the photocatalytic efficiency of TiO2, including surface modification, doping modulation, heterojunction construction, and synergy of composite materials, with a specific emphasis on their applications in artificial photosynthesis, are discussed. TiO2-based heterostructures and hybrids present exciting opportunities for catalyzing solar fuel production, organic degradation, and CO2 reduction via artificial photosynthesis. This review offers an overview of the latest trends and advancements, while also highlighting the ongoing challenges and prospects for future developments in this classical yet rapidly evolving field.
Collapse
Affiliation(s)
- Xiaowen Ruan
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Chengxiang Huang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
Abdo SM, El-Hout SI, Rashed MN, El-Dosoqy TI, El-Sheikh SM. Modified silver phosphate nanocomposite as an effective visible-light-driven photocatalyst in the reduction of aqueous Cr(VI). MATERIALS RESEARCH BULLETIN 2024; 169:112511. [DOI: 10.1016/j.materresbull.2023.112511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
6
|
Sheikhsamany R, Faghihian H, Shirani M. The MIL100(Fe)/BaTi 0.85Zr 0.15O 3 nanocomposite with the photocatalytic capability for study of tetracycline photodegradation kinetics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122323. [PMID: 36621027 DOI: 10.1016/j.saa.2023.122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The visible light-active nanocomposite with the photocatalytic capability was facile one-pot solvothermal method successfully synthesized. X-ray diffraction (XRD), Thermogravimetry and Derivative Thermogravimetry (TG-DTG), Scanning Electron Microscopy with Energy Dispersive X-ray Analysis (SEM-EDX), Diffuse Reflectance Spectroscopy (UV-Vis DRS), and Fourier Transform Infra-Red (FT-IR) analysis were employed to characterize the synthetized BaTi0.85Zr0.15O3, MIL-100(Fe), and the MIL-100(Fe)/BaTi0.85Zr0.15O3 samples. As a result of the Scherrer equations, the size of grains for MIL-100(Fe), BaTi0.85Zr0.15O3, and MIL-100(Fe)/BaTi0.85Zr0.15O3 was estimated to be 40.81, 12.00, and 22.70 nm, respectively. MIL-100(Fe), BaTi0.85Zr0.15O3, and MIL-100(Fe)/BaTi0.85Zr0.15O3 samples showed bandgap values of 1.77, 3.02, and 2.56 determined from their absorption edge wavelengths. In the photodegraded solutions, chemical oxygen demand (COD) data and tetracycline (TC) absorbencies were used to obtain the rate constants of 0.032 min-1 and 0.030 min-1, respectively. This corresponds to t1/2-values of 27.7 min and 21.7 min, respectively, for the degradation and mineralization of TC molecules during photodegradation process.
Collapse
Affiliation(s)
- Raana Sheikhsamany
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Hossein Faghihian
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran
| | - Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, P. O. Box 7867161167, Iran
| |
Collapse
|
7
|
Le-Duy N, Hoang LAT, Nguyen TD, Lee T. Pd nanoparticles decorated BiVO 4 pine architectures for photocatalytic degradation of sulfamethoxazole. CHEMOSPHERE 2023; 321:138118. [PMID: 36775029 DOI: 10.1016/j.chemosphere.2023.138118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Sulfamethoxazole (SMX) has been extensively detected in wastewater treatment plant effluents and surface water. Because of its potential risks to ecology and health, treatment for eliminating SMX is urgently required. In this study, we report the application of Pd nanoparticles decorated on BiVO4 pine architecture for the photocatalytic degradation of SMX. The results showed that the barer BiVO4 and Pd-BiVO4 eliminated SMX under visible-light irradiation. After 210 min of irradiation, 98.8% of SMX was substantially eliminated by Pd-BiVO4, whereas bare BiVO4 can degraded approximately 36.3% of SMX. Pd-BiVO4 also exhibited a high mineralization rate (84% of total organic carbon (TOC) removal) compared to bare BiVO4 (51% of TOC removal). Through three-dimensional excitation-emission matrix fluorescence spectra, SMX with high fluorescence intensity can be degraded to non-fluorescence intermediate products, further confirming the high mineralization of SMX over Pd-BiVO4 catalyst. Well-dispersed Pd nanoparticles on the {040} facet of BiVO4 pine architecture can support the recombination of photogenerated charge carriers because of the formation of the Schottky junction at the Pd-BiVO4 interface. Besides, the active species trapping tests indicated that •O2- and h+ radicals dominate SMX photodegradation over Pd-BiVO4. The main degradation intermediates of SMX in the reaction solution was also identified through ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis. This investigation can provide insight into designing metallic/semiconductor junctions for antibiotic elimination in water media.
Collapse
Affiliation(s)
- Nhat Le-Duy
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Lan-Anh T Hoang
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Trinh Duy Nguyen
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam.
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
8
|
Pahuja M, De I, Ahmed Siddiqui S, Das S, Afshan M, Alam K, Riyajuddin S, Rani S, Ghosh R, Rani D, Gill K, Singh M, Ghosh K. Seamless Architecture of Porous Carbon Matrix Decorated with Ta2O5 Nanostructure-based Recyclable Photocatalytic Cartridge for Toxicity Remediation of Industrial Dye Effluents. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Mehrabanpour N, Nezamzadeh-Ejhieh A, Ghattavi S. Cefotaxime degradation by the coupled binary CdS-PbS: characterization and the photocatalytic process kinetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33725-33736. [PMID: 36495433 DOI: 10.1007/s11356-022-24613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Increased water pollution due to discharging industrial/urban/hospital wastewater has been adopted to introduce/develop novel removal techniques/catalyst/adsorbent. The hexagonal (wurtzite) CdS and the cubic PbS nanoparticles (NPs) were synthesized, coupled, and supported onto clinoptilolite NPs (CNP). Then, the sample was characterized by X-ray powder diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR), and a scanning electron microscope equipped with an energy dispersive X-ray analyzer (SEM-EDX) techniques. The average crystallite size for CdS NPs, PbS NPs, CNP, and CdS-PbS/CNP samples was obtained at about 24, 36, 27, and 14 nm using the Scherrer formula value of nanometer, by the W-H formula, 31, 17, 39, and 51, respectively. Only a detectable slope can be observed from the DRS spectra for CdS NPs at 591 nm corresponding to an Eg value of 2.1 eV. PbS NPs have a broad abruption peak that begins from the visible region and extends to the IR region of the light. A boosted photocatalytic activity of the supported binary catalysts towards cefotaxime (CT) was reached. An apparent first kinetic model was reached with a k-value of 0.021 min-1 corresponding to the t1/2 value of 33 min. A decreased COD trend for the photodegraded CT solutions was reached, and the chemical oxygen demand (COD) results in the Hinshelwood model showed a k-value of 0.016 min-1, corresponding to a t1/2 value of 43 min.
Collapse
Affiliation(s)
- Najme Mehrabanpour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Islamic Republic of Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Islamic Republic of Iran.
| | - Shirin Ghattavi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Islamic Republic of Iran
| |
Collapse
|
10
|
Balasurya S, Okla MK, AbdElgawad H, Al-Ghamdi AA, Abdel-Maksoud MA, Al-Amri SS, Madany MMY, Khan SS. Self-propelled nanojets an interfacial Schottky junctions modulated oxygen vacancies enriched for enhanced photo-Fenton degradation of organic contaminant: Improving H 2O 2 generation, Fe 3+/Fe 2+ cycle and enhancing plant metabolism. CHEMOSPHERE 2023; 314:137516. [PMID: 36521743 DOI: 10.1016/j.chemosphere.2022.137516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The study reports an innovative approach on sunlit driven heterostructure photocatalytic generation of H2O2 and removal of cefixime. In the present work, we have fabricated Mn/Mg doped CoFe2O4 modified CaCr2O4 decorated by Ag3PO4 quantum dots (Ag3PO4 QDs), a p-n-p nano heterojunction. The study promotes the photocatalytic production of H2O2 and self-Fenton photocatalytic degradation of cefixime. Egg white-assisted synthesis of Mn-doped CoFe2O4 causes the lattice oxygen defect, which enhances the photocatalytic activity. Lattice oxygen defect enable the adsorption of O2, which enable the conversion of •O2 in the valence band of CoFe2O4 for the endogenous production of H2O2. The higher in the surface area enhance the photocatalytic activity under visible light irradiation. Mn-CoFe2O4-CaCr2O4-Ag3PO4 QDs enables the complete photocatalytic degradation of cefixime (99.9%) and the complete removal was determined by total organic carbon (TOC) removal and it was around 99.4%. Meanwhile the photocatalytic degradation pathway of cefixime was determined by LC-MS/MS. Reusability of the nano heterojunction was determined by six cycle test, and the reusability of the nano heterojunction was 99.8%. Further, the toxicity of the nanomaterial was studied in maize plant and the results shows that the nanoheterojunction enhances the maize growth. The study systematically reveals the robust activity of nano heterojunction for sustainable water treatment.
Collapse
Affiliation(s)
- S Balasurya
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, Varennes, QC, Canada
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerpen, Belgium
| | - Abdullah A Al-Ghamdi
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerpen, Belgium
| | - Saud S Al-Amri
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerpen, Belgium
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - S Sudheer Khan
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
11
|
Kolahdoozan M, Rahimi T, Taghizadeh A, Aghaei H. Preparation of new hydrogels by visible light cross-linking of dextran methacrylate and poly(ethylene glycol)-maleic acid copolymer. Int J Biol Macromol 2023; 227:1221-1233. [PMID: 36464196 DOI: 10.1016/j.ijbiomac.2022.11.309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
In this work, a series of new biodegradable and biocompatible hydrogels were synthesized by photopolymerization of dextran-methacrylate (DXM) with poly(ethylene glycol)-maleic acid copolymer (poly(PEG-co-MA, PEGMA)) using (-)-riboflavin as a visible light photoinitiator and L-arginine as a co-photoinitiator. DXM was prepared by acylation of dextran (DX) with methacryloyl chloride (MAC), and PEGMA was synthesized by polycondensation of poly(ethylene glycol) (PEG) and maleic acid (MA). The DXM and PEGMA were characterized by FT-IR and 1HNMR spectroscopy. Different types of hydrogels from various ratios of DXM and PEGMA were prepared and characterized by SEM. The results showed that the prepared hydrogel by photo-cross-linking of DXM (DPHG0) was transparent and flexible, and its physical shape was excellent, but it was sticky. The stickiness was reduced by increasing the PEGMA contents, and different types of DXM/PEGMA hydrogels (DPHG1-4) with various properties were prepared. For example, DPHG2 (PEGMA content was 0.25 g) was transparent and flexible, its physical shape was excellent, and it was not sticky. The prepared hydrogels showed excellent cytocompatibility, and their tensile and compressive strength were also evaluated. Additionally, the in vitro degradation and swelling ratios of the prepared hydrogels were studied in buffer solution at different pHs.
Collapse
Affiliation(s)
- Majid Kolahdoozan
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| | - Tayebeh Rahimi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Ameneh Taghizadeh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Hamidreza Aghaei
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| |
Collapse
|
12
|
Photocatalytic activity of ZnO-PbS nanoscale toward Allura Red AC in an aqueous solution: Characterization and mechanism study. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Mokhtari S, Faghihian H, Mirmohammadi M. A core/shell TiO 2 magnetized molecularly imprinted photocatalyst (MMIP@TiO 2): synthesis and its photodegradation activity towards sulfasalazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13624-13638. [PMID: 36138289 DOI: 10.1007/s11356-022-22792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Although the selectivity of TiO2 for the degradation of target molecules is not enough, it is a broadly employed photocatalyst for the degradation of many pollutants. Molecularly imprinted compounds owing to their extreme recognition specificity have become increasingly popular for preparing selective photocatalysts. In this work, based on molecularly imprinted magnetized TiO2 (MMIP@TiO2), a selective photocatalyst was prepared. Via the co-precipitation method, Fe3O4 particles were prepared and coated respectively by SiO2, vinyl end groups, and molecularly imprinted polymers (MIP). The synthesized photocatalyst was characterized by the X-ray diffraction method (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), vibrating sample magnetometry (VSM), high-performance liquid chromatography (HPLC), and photoluminescence analysis (PL). The photocatalyst was then used to degrade the sulfasalazine pharmaceutical pollutant under UV irradiation. An average crystallite size of 9 nm was obtained for the MMIP@TiO2 sample from the Scherrer formula and 34.5 nm by the Williamson-Hall formula. The results revealed that compared to the non-imprinted counterpart, the molecularly imprinted photocatalyst had significantly higher efficiency and selectivity for the degradation of target molecules. The process was forwarded with 90% efficiency within 10 min. Optimal conditions were 10.0 min irradiation when 25 mL SSZ solution (50 mg/L), 0.07 g/L catalyst dose, and pH 6.0 were applied. The maximum removal efficiency was calculated to be 92%. The external magnetic field quickly removed the photocatalyst from the solution and regenerated it. It was revealed that after each regeneration cycle, the efficiency dropped. Nevertheless, 63% of the preliminary effectiveness remained after four regeneration steps.
Collapse
Affiliation(s)
- Sheida Mokhtari
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Hossein Faghihian
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| | - Mehrosadat Mirmohammadi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| |
Collapse
|
14
|
Yousefi A, Nezamzadeh-Ejhieh A. Characterization of BiOCl/BiOI binary catalyst and its photocatalytic activity towards rifampin. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Synthesis and visible light catalytic activity of Ag3PO4/Bi2SiO5 nanocomposites. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Okla MK, Balasurya S, Alaraidh IA, Mohebaldin A, Al-Ghamdi AA, Al-Okla MA, Abdel-Maksoud MA, Abdelaziz RF, Soufan W, Balakrishnaraja R, Raju LL, Thomas AM, Sudheer Khan S. Plasma-assisted in-situ preparation of L-cystine functionalized silver nanoparticle: An intelligent multicolor nano-sensing of cadmium and paracetamol from environmental sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121330. [PMID: 35605418 DOI: 10.1016/j.saa.2022.121330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
L-cystine (L-cys) functionalized plasmonic silver nanomaterial (Ag NPs) was fabricated toward the selective and sensitive detection of paracetamol and cadmium. The prepared L-cys-Ag nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD) and fourier transform infrared spectroscopy (FTIR) analyses. SEM imaging show that Ag NPs was decorated on the surface of L-cysteine 3D cubic nanosheet. L-cys-Ag NPs showed selective and sensitive detection towards paracetamol and cadmium. The interference study confirms that the presence of other metal ions didn't inhibit the detection of cadmium by L-cys-Ag NPs. The limit of detection of paracetamol and cadmium by L-cys-Ag NPs was calculated to be 1.2 and 2.82 nM respectively. In addition, the real sample detection of paracetamol on blood serum and urine, and cadmium on STP were performed and the recovery percentage was above 97%. Further, the real sample analysis was performed in tap and drinking water and the recovery percentage was more than 98%. The analytic logic gate on the multicolour detection of cadmium and paracetamol was performed for the semi-quantitative monitoring of paracetamol and cadmium by L-cys-Ag NPs. The developed L-cys-Ag NPs were found to be an effective tool for the monitoring of cadmium in environmental water bodies and paracetamol in blood and urine.
Collapse
Affiliation(s)
- Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - S Balasurya
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Ibrahim A Alaraidh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Asmaa Mohebaldin
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah A Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed A Al-Okla
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ramadan F Abdelaziz
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Walid Soufan
- College of Food and Agriculture Sciences, King Saud University. P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - R Balakrishnaraja
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Lija L Raju
- Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, India
| | - Ajith M Thomas
- Department of Botany and Biotechnology, St Xavier's College, Thumba, Thiruvananthapuram, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
17
|
Vahabirad S, Nezamzadeh-Ejhieh A, Mirmohammadi M. The coupled BiOI/(BiO)2CO3 catalyst: Brief characterization, and study of its photocatalytic kinetics. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
DAVOODI ELHAM, TAHANPESAR ELHAM, MASSAH AHMADREZA. Synthesis of 1,8‐dioxo-octahydroxanthenes utilizing nanodiatomite@melamine-SO3H as a novel heterogeneous catalyst under solvent-free conditions. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02065-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Prabula SS, Hentry C, Rose BL, Parvathiraja C, Mani A, Wabaidur SM, Eldesoky GE, Islam MA. Synthesis of Silver Nanoparticles by Using
Cassia auriculata
Flower Extract and Their Photocatalytic Behavior. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. Surendradev Prabula
- St. Judes College, Thoothoor Department of Physics 629176 Kanyakumari Tamil Nadu India
- Manonmaniam Sundaranar University, Abishekapatti 627012 Tirunelveli Tamil Nadu India
| | - Conchalish Hentry
- St. Judes College, Thoothoor Department of Physics 629176 Kanyakumari Tamil Nadu India
- Manonmaniam Sundaranar University, Abishekapatti 627012 Tirunelveli Tamil Nadu India
| | - B. Leema Rose
- St. Judes College, Thoothoor Department of Physics 629176 Kanyakumari Tamil Nadu India
- Manonmaniam Sundaranar University, Abishekapatti 627012 Tirunelveli Tamil Nadu India
| | - Chelliah Parvathiraja
- Manonmaniam Sundaranar University, Abishekapatti Department of Physics 627012 Tirunelveli Tamil Nadu India
| | - Aravind Mani
- Nanjil Catholic College of Arts and Science, Kaliyakkavilai Department of Physics 629153 Kanyakumari Tamil Nadu India
- Manonmaniam Sundaranar University, Abishekapatti 627012 Tirunelveli Tamil Nadu India
| | | | - Gaber E. Eldesoky
- King Saud University Department of Chemistry, College of Science 11451 Riyadh Saudi Arabia
| | - Mohammed Ataul Islam
- University of Manchester Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health Manchester UK
| |
Collapse
|
20
|
Photocatalytic Degradation of Sodium Diclofenac Using Spinel Ferrites: Kinetic Aspects. Top Catal 2022. [DOI: 10.1007/s11244-022-01627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Spontaneous Adsorption and Efficient Photodegradation of Indigo Carmine under Visible Light by Bismuth Oxyiodide Nanoparticles Fabricated Entirely at Room Temperature. INORGANICS 2022. [DOI: 10.3390/inorganics10050065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bismuth oxyiodide (BiOI) is a targeted material for its relative safety and photocatalytic activity under visible light. In this study, a successful simple and energy-saving route was applied to prepare BiOI through a sonochemical process at room temperature. The characterization of the prepared BiOI was conducted by physical means. The transmission electron microscope (TEM) image showed that the BiOI comprises nanoparticles of about 20 nm. Also, the surface area of the BiOI was found to be 34.03 m2 g−1 with an energy gap of 1.835 eV. The adsorption and photocatalytic capacities of the BiOI were examined for the indigo carmine dye (IC) as a model water-pollutant via the batch experiment methodology. The solution parameters were optimized, including pH, contact time, IC concentration, and temperature. Worth mentioning that an adsorption capacity of 185 mg·g−1 was obtained from 100 mg L−1 IC solution at 25 °C within 60 min as an equilibrium time. In addition, the BiOI showed a high degradation efficiency towards IC under tungsten lamb (80 W), where 93% was removed within 180 min, and the complete degradation was accomplished in 240 min. The fabricated BiOI nanoparticles completely mineralized the IC under artificial visible light, as indicated by the total organic carbon analysis.
Collapse
|
22
|
Collu DA, Carucci C, Piludu M, Parsons DF, Salis A. Aurivillius Oxides Nanosheets-Based Photocatalysts for Efficient Oxidation of Malachite Green Dye. Int J Mol Sci 2022; 23:5422. [PMID: 35628232 PMCID: PMC9140923 DOI: 10.3390/ijms23105422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Aurivillius oxides ferroelectric layered materials are formed by bismuth oxide and pseu-do-perovskite layers. They have a good ionic conductivity, which is beneficial for various photo-catalyzed reactions. Here, we synthesized ultra-thin nanosheets of two different Aurivillius oxides, Bi2WO6 (BWO) and Bi2MoO6 (BMO), by using a hard-template process. All materials were characterized through XRD, TEM, FTIR, TGA/DSC, DLS/ELS, DRS, UV-Vis. Band gap material (Eg) and potential of the valence band (EVB) were calculated for BWO and BMO. In contrast to previous reports on the use of multi composite materials, a new procedure for photocatalytic efficient BMO nanosheets was developed. The procedure, with an additional step only, avoids the use of composite materials, improves crystal structure, and strongly reduces impurities. BWO and BMO were used as photocatalysts for the degradation of the water pollutant dye malachite green (MG). MG removal kinetics was fitted with Langmuir-Hinshelwood model obtaining a kinetic constant k = 7.81 × 10-2 min-1 for BWO and k = 9.27 × 10-2 min-1 for BMO. Photocatalytic dye degradation was highly effective, reaching 89% and 91% MG removal for BWO and BMO, respectively. A control experiment, carried out in the absence of light, allowed to quantify the contribution of adsorption to MG removal process. Adsorption contributed to MG removal by a 51% for BWO and only by a 19% for BMO, suggesting a different degradation mechanism for the two photocatalysts. The advanced MG degradation process due to BMO is likely caused by the high crystallinity of the material synthetized with the new procedure. Reuse tests demonstrated that both photocatalysts are highly active and stable reaching a MG removal up to 95% at the 10th reaction cycle. These results demonstrate that BMO nanosheets, synthesized with an easy additional step, achieved the best degradation performance, and can be successfully used for environmental remediation applications.
Collapse
Affiliation(s)
- David A. Collu
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
| | - Cristina Carucci
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Marco Piludu
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy;
| | - Drew F. Parsons
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
23
|
Facile Synthesis of ZSM-5/TiO2/Ni Novel Nanocomposite for the Efficient Photocatalytic Degradation of Methylene Blue Dye. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02336-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
High performing p-n system of CaFe2O4 coupled ZnO for synergetic degradation of Rhodamine B with white-light photocatalysis and bactericidal action. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Li Q, Lai C, Yu J, Luo J, Deng J, Li G, Chen W, Li B, Chen G. Degradation of diclofenac sodium by the UV/chlorine process: Reaction mechanism, influencing factors and toxicity evaluation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Chang ZY, Wang ZY, Zhang R, Yu L. Acceleration of biotic decolorization and partial mineralization of methyl orange by a photo-assisted n-type semiconductor. CHEMOSPHERE 2022; 291:132846. [PMID: 34767853 DOI: 10.1016/j.chemosphere.2021.132846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
In this study, a n-type semiconductor perylene diimide (PDI) was coupled with biodegradation to accelerate the biotic decolorization and mineralization of methyl orange (MO) under light condition. The decolorization rates (k1) of MO in pure and mixed cultures with PDI were promoted by 1.35 and 1.79 folds, respectively, comparing to the cultures without PDI. The total mineralization efficiency of 4-aminobenzenesulfonic acid (4-ABA) was achieved to 22.10 ± 0.84% when in the presence of PDI. The quinone-like group and oxidation-reduction capacity of PDI were detected by Fourier transform infrared spectroscopy and cyclic voltammetry, respectively, but the enhancement on the biotic decolorization of MO was not promoted under dark condition indicating that microbial extracellular electron transfer was not promoted. The 4-ABA was confirmed to be partially mineralized when the PDI exposure to light. The generated free radicals i.e., h+, ⸱OH, was demonstrated as active species to accelerate the decolorization and mineralization of MO by ESR test and radical quenching experiments. The bond breaking of MO and 4-ABA molecules were successfully predicted by density functional theory calculations and were further proven by liquid-chromatography mass spectra. The synergistic mechanism of decolorization and mineralization of MO by microorganism and photocatalysis was proposed. Moreover, High-throughput sequencing and Live/dead cell results indicated that the presence of PDI has no obvious toxicity to the microorganisms and will not change the microbial communities during the short-term treatment period. The results of study provided a biological intimate photocatalytic material and suggested a feasible way for its combination with biodegradation of azo dyes.
Collapse
Affiliation(s)
- Zhong-Yue Chang
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Yang Wang
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Rui Zhang
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Lei Yu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
27
|
Wang W, Liu Y, Yu S, Wen X, Wu D. Highly efficient solar-light-driven photocatalytic degradation of pollutants in petroleum refinery wastewater on hierarchically-structured copper sulfide (CuS) hollow nanocatalysts. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Nguyen TD, Nguyen VH, Le Hoang Pham A, Van Nguyen T, Lee T. Fabrication of binary g-C 3N 4/UU-200 composites with enhanced visible-light-driven photocatalytic performance toward organic pollutant eliminations. RSC Adv 2022; 12:25377-25387. [PMID: 36199332 PMCID: PMC9446416 DOI: 10.1039/d2ra04222c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 01/26/2023] Open
Abstract
In this study, g-C3N4/UU-200 heterojunction photocatalysts displaying superior photocatalytic activity for organic pollutant elimination under white LED light irradiation were fabricated via an in situ solvothermal method. The successful construction of a heterojunction between g-C3N4 and UU-200 was evidenced by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The improved photocatalytic degradation of rhodamine B (RhB) and tetracycline hydrochloride (TCH) over g-C3N4/UU-200 compared with that over the individual components can be attributed to the anchoring of the g-C3N4 layered structure on the UU-200 surface promoting the decrease of the bandgap of UU-200, as confirmed by ultraviolet–visible diffuse reflectance spectroscopy, and to the light-induced charge separation efficiency stemming from a suitable heterojunction structure, which was revealed by photoluminescence spectroscopy and electrochemical analyses. Specifically, the 40% g-C3N4/UU-200 composite showed the highest photocatalytic activity toward the degradation of RhB (97.5%) within 90 min and TCH (72.6%) within 180 min. Furthermore, this catalyst can be recycled four runs, which demonstrates the potential of the g-C3N4/UU-200 composite as an alternative visible-light-sensitive catalyst for organic pollutant elimination. The binary g-C3N4/UU–200 heterojunction photocatalysts displaying superior photocatalytic activity for organic pollutant elimination under white LED light irradiation were fabricated via an in situ solvothermal method.![]()
Collapse
Affiliation(s)
- Trinh Duy Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi, Vietnam
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Vinh Huu Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Ai Le Hoang Pham
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, No. 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City, Vietnam
| | - Tuyen Van Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi, Vietnam
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi, Vietnam
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| |
Collapse
|
29
|
Sheikhsamany R, Faghihian H, Fazaeli R. One-pot synthesis of BaTi0.85Zr0.15O3/MOF-199 (HKUST-1) as a highly efficient photocatalytic nanocomposite for tetracycline degradation under UV irradiation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
FeO-Clinoptilolite nanoparticles: Brief characterization and its photocatalytic kinetics towards 2,4-dichloroaniline. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Algethami FK, Elamin MR, Abdulkhair BY, Al‐Zharani M, Qarah NAS, Alghamdi MA. Fast fabrication of bismuth oxyiodide/carbon‐nanofibers composites for efficient anti‐proliferation of liver and breast cancer cells. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Faisal K. Algethami
- Imam Mohammad Ibn Saud Islamic University (IMSIU) College of Science, Chemistry Department P.O. Box 90905 Riyadh 11623 KSA
| | - Mohamed R. Elamin
- Imam Mohammad Ibn Saud Islamic University (IMSIU) College of Science, Chemistry Department P.O. Box 90905 Riyadh 11623 KSA
- Industrial research and consultancy center (IRCC) Khartoum North Sudan
| | - Babiker Y. Abdulkhair
- Imam Mohammad Ibn Saud Islamic University (IMSIU) College of Science, Chemistry Department P.O. Box 90905 Riyadh 11623 KSA
- Sudan University of Science and Technology (SUST) College of Science, Chemistry Department P.O. Box 407 Khartoum Sudan
| | - Mohammed Al‐Zharani
- Imam Mohammad Ibn Saud Islamic University (IMSIU) College of Science, Biology Department Riyadh Saudi Arabia
| | - Nagib A. S. Qarah
- Department of Chemistry, Faculty of Education-Zabid Hodeidah University Hodeidah Yemen
| | - Mashael A. Alghamdi
- Imam Mohammad Ibn Saud Islamic University (IMSIU) College of Science, Chemistry Department P.O. Box 90905 Riyadh 11623 KSA
| |
Collapse
|
32
|
Elangovan M, Bharathaiyengar SM, PonnanEttiyappan J. Photocatalytic degradation of diclofenac using TiO 2-CdS heterojunction catalysts under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18186-18200. [PMID: 33403641 DOI: 10.1007/s11356-020-11538-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
The present study reports the photocatalytic degradation of analgesic drug diclofenac using the hydrothermally prepared TiO2-CdS heterojunction catalyst. The results suggest that the prepared catalysts exhibited excellent photocatalytic activity under visible light irradiation. The photodegradation kinetics were well fitted to the pseudo-first-order reaction. The apparent reaction rate constant for TC5 catalyst in the diclofenac degradation was 0.02316 min-1. Mineralisation of diclofenac using TC5 photocatalyst was around 86% within 4 h of irradiation time. The operating parameters such as optimal catalyst dosage, apparent solution pH and the effect of initial diclofenac concentration were also studied using the TC5 catalyst. The role of active species in the degradation mechanism was elucidated and it was found that the hydroxyl radical is the main active species in the diclofenac degradation mechanism. The charge transfer between heterojunction catalysts is facilitated by direct Z-scheme heterojunction structure. The coupled photocatalysts also showed good photochemical stability and reusability over five successive reaction cycles. The tentative degradation pathway has been devised based on LC-MS peaks, and it is found that only m/z 224, m/z 178 and m/z 124 were persisted at the end of the reaction.
Collapse
Affiliation(s)
- Mugunthan Elangovan
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India
| | | | | |
Collapse
|
33
|
Aghaei H, Yasinian A, Taghizadeh A. Covalent immobilization of lipase from Candida rugosa on epoxy-activated cloisite 30B as a new heterofunctional carrier and its application in the synthesis of banana flavor and production of biodiesel. Int J Biol Macromol 2021; 178:569-579. [PMID: 33667558 DOI: 10.1016/j.ijbiomac.2021.02.146] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
In this paper, an epoxy-activated cloisite (ECL) was prepared as a new heterofunctional carrier via a reaction between cloisite 30B (CL) and epichlorohydrin and utilized for covalent immobilization of lipase from Candida rugosa. The lipase immobilized on the ECL (LECL) was successfully used in the olive oil hydrolysis, synthesis of isoamyl acetate (banana flavor), and biodiesel production. The TGA, FT-IR, SEM, and XRD were used to characterize CL, ECL, and LECL. The influences of temperature, pH, thermal stability, and storage capacity were examined in the olive oil hydrolysis. The effects of solvent, temperature, time, water content, and substrates molar ratio on the yields of ester and biodiesel were also investigated. In the optimized conditions, the hydrolytic activity of LECL was 1.85 ± 0.05 U/ mg, and the maximum yield of ester and biodiesel was 91.6% and 95.4%, respectively. The LECL showed good thermal stability and storage capacity compared to the free lipase. Additionally, LECL was reusable for both esterification and transesterification after being used for nine cycles.
Collapse
Affiliation(s)
- Hamidreza Aghaei
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| | - Atefeh Yasinian
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Ameneh Taghizadeh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| |
Collapse
|
34
|
Gerbaldo MV, Marchetti SG, Elías VR, Mendieta SN, Crivello ME. Degradation of anti-inflammatory drug diclofenac using cobalt ferrite as photocatalyst. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Pourshirband N, Nezamzadeh-Ejhieh A, Nezamoddin Mirsattari S. The coupled AgI/BiOI catalyst: Synthesis, brief characterization, and study of the kinetic of the EBT photodegradation. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138090] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|