1
|
Li C, Shi L, Liu T, Dong K, Ren W, Zhang Y. Changes in electron distribution of aged microplastic and their environmental impacts in aquatic environments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:124. [PMID: 40113611 DOI: 10.1007/s10653-025-02430-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) are widespread environmental pollutants. This study primarily examines the changes in electro distribution of aged MPs in aquatic environments and their subsequent impact on the environment. Under the action of natural and artificial aging, the electron cloud arrangement of MPs will change, thus affecting the relevant properties of MPs. Among them, the free radicals formed by advanced oxidation technology will be enriched on the surface of MPs carrying benzene rings, and react with other pollutants (organic pollutants, heavy metals, etc.) adsorbed by MPs to form environmental persistent free radicals (EPFRs). The electron cloud density of MPs carrying EPFRs increases, and the reactivity will also increase. Additionally, the oxygen-containing functional groups on the surface of aged MPs enhance their selective adsorption, altering their environmental impact. MPs can serve as a source of free radicals in the environment, enhance the oxidation capacity of other substances in the environment, and even affect the expression of antibiotic resistance genes. In addition, MPs have a high mobility, which will have a greater negative impact in the environment. Additionally, the high mobility of MPs amplifies their negative environmental impact. This study examines the changes in electron distribution of aged MPs and highlights their effects on aquatic ecosystems, providing insights into pollution control, toxicity, and degradation mechanisms.
Collapse
Affiliation(s)
- Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lixia Shi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Tao Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Keke Dong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Weiwei Ren
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yunshu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
2
|
Dai Q, Xu R, Xia H, Qiao B, Niu Q, Wang L, Wang A, Guo Y, Guo Y, Wang W, Zhan W. Catalytic Hydrolysis-Oxidation of Halogenated Methanes over Phase- and Defect-Engineered CePO 4: Halogenated Byproduct-Free and Stable Elimination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39037090 DOI: 10.1021/acs.est.4c04436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Catalytic elimination of halogenated volatile organic compound (HVOC) emissions was still a huge challenge through conventional catalytic combustion technology, such as the formation of halogenated byproducts and the destruction of the catalyst structure; hence, more efficient catalysts or a new route was eagerly desired. In this work, crystal phase- and defect-engineered CePO4 was rationally designed and presented abundant acid sites, moderate redox ability, and superior thermal/chemical stability; the halogenated byproduct-free and stable elimination of HVOCs was achieved especially in the presence of H2O. Hexagonal and defective CePO4 with more structural H2O and Brønsted/Lewis acid sites was more reactive and durable compared with monoclinic CePO4. Based on the phase and defect engineering of CePO4, in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS), and kinetic isotope effect experiments, a hydrolysis-oxidation pathway characterized by the direct involvement of H2O was proposed. Initiatively, an external electric field (5 mA) significantly accelerated the elimination of HVOCs and even 90% conversion of dichloromethane could be obtained at 170 °C over hexagonal CePO4. The structure-performance-dependent relationships of the engineered CePO4 contributed to the rational design of efficient catalysts for HVOC elimination, and this pioneering work on external electric field-assisted catalytic hydrolysis-oxidation established an innovative HVOC elimination route.
Collapse
Affiliation(s)
- Qiguang Dai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ronghua Xu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hangqi Xia
- Erdos Electric Power and Metallurgy Group Co. Ltd., Ordos 016064, Inner Mongolia, P. R. China
| | - Boyuan Qiao
- Erdos Electric Power and Metallurgy Group Co. Ltd., Ordos 016064, Inner Mongolia, P. R. China
| | - Qiang Niu
- Erdos Electric Power and Metallurgy Group Co. Ltd., Ordos 016064, Inner Mongolia, P. R. China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Aiyong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|