1
|
Kwiatkowski M. An analysis of the textural properties of activated carbons obtained from biomass via the LBET, NLDFT and QSDFT methods. Sci Rep 2024; 14:26472. [PMID: 39488547 PMCID: PMC11531491 DOI: 10.1038/s41598-024-76297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
This article presents the unique research results of the comprehensive analysis of the porous structure of activated carbons obtained from biomass waste materials from the wood industry during activation in an air atmosphere. The porous structure was analysed on the basis of nitrogen and argon adsorption isotherms via complementary multi-method analysis, i.e. the new numerical clustering-based adsorption analysis, the non-local density functional theory and the quenched solid density functional theory methods. The analytical results for the prepared activated carbons were compared with analogous results obtained for commercial activated carbon. On the basis of the conducted studies it has been determined that the new numerical clustering-based adsorption analysis method gives credible and valuable information on the textural properties of activated carbons which are in strict correlation and mutually complement with the results of the analysis with the use of the quenched solid density functional theory method. The research results obtained in this paper, it has also been shown that from waste materials of the wood industry, in a relatively cheap and cleaner production process, it is possible not only to obtain carbonaceous materials almost comparable to commercial activated carbon, but also to manage the waste in accordance with the principles of a closed-loop economy and sustainable development. The paper pays also attention to the often overlooked economic and ecological aspects, which should nevertheless be taken into account when comparing different adsorbents, rather than their textural properties alone.
Collapse
Affiliation(s)
- Mirosław Kwiatkowski
- Faculty of Energy and Fuels, AGH University of Krakow, al. Adama Mickiewicza 30, Krakow, 30-059, Poland.
| |
Collapse
|
2
|
Taylor JH, Masoudi Soltani S. Carbonaceous adsorbents in the removal of aquaculture pollutants: A technical review of methods and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115552. [PMID: 37813076 DOI: 10.1016/j.ecoenv.2023.115552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Carbonaceous adsorbents (CAs) are becoming increasingly popular owing to their low-cost, ease of preparation, and versatility. Meanwhile, aquaculture is becoming a fundamental food industry, globally, due to a wide range of advantages such as economic and nutritional benefits, whilst protecting the depletion of natural resources. However, as with any farming, the technique is known to introduce a plethora of chemicals into the surrounding environment, including antibiotics, nutrients, fertilisers and more. Therefore, the treatment of aquaculture effluent is gaining traction to ensure the sustainable growth of the industry. Although the existing mitigation techniques are somewhat effective, they suffer from degradation of the water quality or harm to local environments/organisms. This article aims to identify the sources and impacts of various aquaculture pollutants. After which the authors will provide an environmentally friendly and novel approach to the treatment of aquaculture effluent using carbonaceous adsorbents. The article will detail discussions about the product life span, including, synthesis, activation, modification, applications in aqueous media, regeneration and End-of-Life (EoL) approaches, with a particular focus on the impacts of competitive adsorption between pollutants and environmental matrices. Some research gaps were also highlighted, such as the lack of literature applying real-world samples, the effects of competitive adsorption and the EoL applications and management for CAs.
Collapse
Affiliation(s)
- Jessica H Taylor
- Department of Chemical Engineering, Brunel University London, Uxbridge UB8 3PH, UK
| | | |
Collapse
|
3
|
Mandal S, Hwang S, Marpu SB, Omary MA, Prybutok V, Shi SQ. Bioinspired Synthesis of Silver Nanoparticles for the Remediation of Toxic Pollutants and Enhanced Antibacterial Activity. Biomolecules 2023; 13:1054. [PMID: 37509090 PMCID: PMC10377291 DOI: 10.3390/biom13071054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
This research presents a novel and environmentally friendly approach for the synthesis of multifunctional nanobiocomposites for the efficient removal of toxic heavy metal and dye, as well as the disinfection of wastewater microorganisms. The nanobiocomposites (KAC-CS-AgNPs) were prepared by incorporating photochemically generated silver nanoparticles (AgNPs) within a chitosan (CS)-modified, high-surface-area activated carbon derived from kenaf (KAC), using a unique self-activation method. The even distribution of AgNPs was visible in the scanning electron microscopy images and a Fourier transform infra red study demonstrated major absorption peaks. The experimental results revealed that KA-CS-AgNPs exhibited exceptional adsorption efficiency for copper (Cu2+), lead (Pb2+), and Congo Red dye (CR), and showed potent antibacterial activity against Staphylococcus aureus and Escherichia coli. The maximum adsorption capacity (mg g-1) of KAC-CS-AgNPs was 71.5 for Cu2+, 72.3 for Pb2+, and 75.9 for CR, and the adsorption phenomena followed on the Freundlich and Langmuir isotherm models and the second-order kinetic model (R2 > 0.99). KAC-CS-AgNPs also exhibited excellent reusability of up to four consecutive cycles with minor losses in adsorption ability. The thermodynamic parameters indicated that the adsorption process was spontaneous and endothermic in nature. The bacterial inactivation tests demonstrated that KAC-CS-AgNPs had a strong bactericidal effect on both E. coli and S. aureus, with MIC calculated for E. coli and S. aureus as 32 µg mL-1 and 44 µg mL-1, respectively. The synthesized bioinspired nanocomposite KAC-CS-AgNPs could be an innovative solution for effective and sustainable wastewater treatment and has great potential for commercial applications.
Collapse
Affiliation(s)
- Sujata Mandal
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Sangchul Hwang
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Sreekar B Marpu
- Department of Chemistry, University of North Texas, Denton, TX 76207, USA
| | - Mohammad A Omary
- Department of Chemistry, University of North Texas, Denton, TX 76207, USA
| | - Victor Prybutok
- G. Brint Ryan College of Business, University of North Texas, Denton, TX 76207, USA
| | - Sheldon Q Shi
- Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA
| |
Collapse
|
4
|
Chen Y, Wang K, Cao L, Huang X, Li Y. Preparation of Reusable Porous Carbon Nanofibers from Oxidized Coal Liquefaction Residue for Efficient Adsorption in Water Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103614. [PMID: 37241241 DOI: 10.3390/ma16103614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Porous carbon nanofibers are commonly used for adsorption processes owing to their high specific surface area and rich pore structure. However, the poor mechanical properties of polyacrylonitrile (PAN)-based porous carbon nanofibers have limited their applications. Herein, we introduced solid waste-derived oxidized coal liquefaction residue (OCLR) into PAN-based nanofibers to obtain activated reinforced porous carbon nanofibers (ARCNF) with enhanced mechanical properties and regeneration for efficient adsorption of organic dyes in wastewater. This study examined the effects of contact time, concentration, temperature, pH, and salinity on the adsorption capacity. The adsorption processes of the dyes in ARCNF are appropriately described by the pseudo-second-order kinetic model. The maximum adsorption capacity for malachite green (MG) on ARCNF is 2712.84 mg g-1 according to the fitted parameters of the Langmuir model. Adsorption thermodynamics indicated that the adsorptions of the five dyes are spontaneous and endothermic processes. In addition, ARCNF have good regenerative performance, and the adsorption capacity of MG is still higher than 76% after 5 adsorption-desorption cycles. Our prepared ARCNF can efficiently adsorb organic dyes in wastewater, reducing the pollution to the environment and providing a new idea for solid waste recycling and water treatment.
Collapse
Affiliation(s)
- Yaoyao Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Kefu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Liqin Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Xueli Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Yizhao Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
5
|
Ay Ç, Sarpaşar Z. Using zeolite and Fe 3O 4@zeolite composites in removal of Reactive Red 120 from wastewater: Isotherm, kinetic, thermodynamic and adsorption behaviors. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2135520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Çiğdem Ay
- Department of Chemistry, Kütahya Dumlupınar University, Science and Art Faculty, Kütahya, Turkey
| | - Zeynep Sarpaşar
- Department of Chemistry, Kütahya Dumlupınar University, Science and Art Faculty, Kütahya, Turkey
| |
Collapse
|
6
|
Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Jiao F, Sang H, Guo P, Miao P, Wang X. Efficient adsorption and porous features from activated carbon felts activated by the eutectic of Na2CO3 and K2CO3 with vapor. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Adsorption of endocrine disruptive congo red onto biosynthesized silver nanoparticles loaded on Hildegardia barteri activated carbon. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Akindolie MS, Choi HJ. Surface modification of spent coffee grounds using phosphoric acid for enhancement of methylene blue adsorption from aqueous solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1218-1234. [PMID: 35228365 DOI: 10.2166/wst.2022.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, the surface of the spent coffee grounds (SCG) was activated using phosphoric acid to increase the removal efficiency of methylene blue (MB) in aqueous solution, which is one of the harmful substances emitted in industrial processes. According to Fourier transform infra-red analysis, after phosphorylation of the SCG (PSCG), P = O group, P-O-C (aromatic) bond, P = OOH and P-O-P were newly introduced on the surface of the adsorbent, and the peaks of carboxyl groups and OH-group were large and broad. In addition, the surface area and mesopore range of the PSCG adsorbent were increased, and the structure changed, which enabled easy adsorption of MB. The process of adsorbing MB from aqueous solution using PSCG was more suitable for the pseudo-second order and Langmuir models, and the adsorption process was closer to chemisorption than physical adsorption. The maximum adsorption capacity of PSCG was 188.68 mg/g. As a result of the reuse test, PSCG showed excellent performance with a high removal efficiency of 90% up to four consecutive uses. PSCG modified with phosphoric acid, an abundant lignocellulose-based biosorbent that is readily available everywhere, is a promising adsorbent capable of adsorbing MB in aqueous solution.
Collapse
Affiliation(s)
- M S Akindolie
- Research Center for Marine Bio-Food and Medicine, Catholic Kwandong University, Beomil-ro 579 Beon-gil, 25601 Gangneung-si, Republic of Korea
| | - H J Choi
- Department of Biomedical Science, Catholic Kwandong University, Beomil-ro 579 beon-gil, 25601 Gangneung-si, Republic of Korea E-mail:
| |
Collapse
|
10
|
Gao X, Cao Z, Li C, Liu J, Liu X, Guo L. Activated carbon fiber modified with hyperbranched polyethylenimine and phytic acid for the effective adsorption and separation of In( iii). NEW J CHEM 2022. [DOI: 10.1039/d2nj03111f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The PA–HPEI–OACF constructed with PA, HPEI, and ACF displays excellent performance in the adsorption and separation of In(iii).
Collapse
Affiliation(s)
- Xuezhen Gao
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Zhiyong Cao
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Changzhen Li
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Junshen Liu
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Xunyong Liu
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Lei Guo
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, P. R. China
| |
Collapse
|
11
|
Wei S, Kamali AR. Waste plastic derived Co3Fe7/CoFe2O4@carbon magnetic nanostructures for efficient dye adsorption. JOURNAL OF ALLOYS AND COMPOUNDS 2021; 886:161201. [DOI: 10.1016/j.jallcom.2021.161201] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Obayomi KS, Oluwadiya AE, Lau SY, Dada AO, Akubuo-Casmir D, Adelani-Akande TA, Fazle Bari A, Temidayo SO, Rahman MM. Biosynthesis of Tithonia diversifolia leaf mediated Zinc Oxide Nanoparticles loaded with flamboyant pods (Delonix regia) for the treatment of Methylene Blue Wastewater. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|