1
|
Kharel HL, Jha L, Tan M, Selvaratnam T. Removal of Cadmium (II) from Aqueous Solution Using Galdieria sulphuraria CCMEE 5587.1. BIOTECH 2024; 13:28. [PMID: 39189207 PMCID: PMC11348382 DOI: 10.3390/biotech13030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
The release of cadmium into the environment is a significant global concern due to its toxicity, non-biodegradability, and persistence in nature. There is an urgent need for effective, eco-friendly, and cost-effective systems for removing Cd because of the many drawbacks of conventional physicochemical techniques. This study investigated the ability of the extremophile red microalgal strain Galdieria sulphuraria CCMEE 5587.1 to tolerate and remove Cd (II) ions at acidic pH in a controlled laboratory environment. Three distinct concentrations of Cd (1.5 mg L-1, 3 mg L-1, and 6 mg L-1) were introduced to the cyanidium medium, and G. sulphuraria cells were introduced in the medium and grown for ten days. Four distinct aspects were identified regarding Cd removal: time course Cd removal, total Cd removal, extracellular Cd removal, and intracellular Cd removal. The inhibitory effects of Cd on G. sulphuraria growth were observed using a daily growth profile. Initial incubation days showed an inhibition of G. sulphuraria growth. In addition, increasing the Cd concentration in the medium decreased the growth rate of G. sulphuraria. Rapid Cd removal occurred on the first day of the experiment, followed by a steady removal of Cd until the last day. The highest total removal efficiency occurred in a medium containing 3 mg L-1 of Cd ions, which was 30%. In contrast, the highest sorption capacity occurred in a medium containing 6 mg L-1 of Cd ions, which was 1.59 mg g-1 of dry biomass. In all media compositions, a major fraction (>80%) of Cd removal occurred via adsorption on the cell surface (extracellular). These results showed that G. sulphuraria cells can remove Cd ions from aqueous solution, which makes them a potential bioremediation option for heavy metal removal.
Collapse
Affiliation(s)
- Hari Lal Kharel
- Department of Civil and Environmental Engineering, Lamar University, Beaumont, TX 77705, USA; (H.L.K.); (L.J.); (M.T.)
| | - Lina Jha
- Department of Civil and Environmental Engineering, Lamar University, Beaumont, TX 77705, USA; (H.L.K.); (L.J.); (M.T.)
| | - Melissa Tan
- Department of Civil and Environmental Engineering, Lamar University, Beaumont, TX 77705, USA; (H.L.K.); (L.J.); (M.T.)
| | - Thinesh Selvaratnam
- Department of Civil and Environmental Engineering, Lamar University, Beaumont, TX 77705, USA; (H.L.K.); (L.J.); (M.T.)
- Center for Advances in Water & Air Quality, College of Engineering, Lamar University, Beaumont, TX 77705, USA
| |
Collapse
|
2
|
Antolín Puebla B, Vega Alegre M, Bolado Rodríguez S, García Encina PA. Microalgae: A Biological Tool for Removal and Recovery of Potentially Toxic Elements in Wastewater Treatment Photobioreactors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 190:147-180. [PMID: 39190203 DOI: 10.1007/10_2024_262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Potentially toxic elements (PTE) pollution in water bodies is an emerging problem in recent decades due to uncontrolled discharges from human activities. Copper, zinc, arsenic, cadmium, lead, mercury, and uranium are considered potentially toxic and carcinogenic elements that threaten human health. Microalgae-based technologies for the wastewater treatment have gained importance in recent years due to their biomass high growth rates and effectiveness. Also, these microalgae-bacteria systems are cost-effective and environmentally friendly, utilize sunlight and CO2, and simultaneously address multiple environmental challenges, such as carbon mitigation, bioremediation, and generation of valuable biomass useful for biofuel production. Additionally, microalgae possess a diverse array of extracellular and intracellular mechanisms that enable them to remove and mitigate the toxicity of PTE present in wastewater. Therefore, photobioreactors are promising candidates for practical applications in bioremediation of wastewater containing toxic elements. Despite the increasing amount of research in this field in recent years, most studies are conducted in laboratory scale and there is a scarcity of large-scale studies under real and variable environmental conditions. Besides, the limited understanding of the multiple mechanisms controlling PTE biosorption in wastewater containing high organic matter loads and potentially toxic elements requires further studies. This chapter provides a schematic representation of the mechanisms and factors involved in the remediation of potentially toxic elements by microalgae, as well as the main results obtained in recent years.
Collapse
Affiliation(s)
- Beatriz Antolín Puebla
- Institute of Sustainable Processes, University of Valladolid, Valladolid, Spain.
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Valladolid, Spain.
| | - Marisol Vega Alegre
- Institute of Sustainable Processes, University of Valladolid, Valladolid, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Valladolid, Spain
| | - Silvia Bolado Rodríguez
- Institute of Sustainable Processes, University of Valladolid, Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
| | - Pedro A García Encina
- Institute of Sustainable Processes, University of Valladolid, Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
| |
Collapse
|
3
|
Chakravorty M, Nanda M, Bisht B, Sharma R, Kumar S, Mishra A, Vlaskin MS, Chauhan PK, Kumar V. Heavy metal tolerance in microalgae: Detoxification mechanisms and applications. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106555. [PMID: 37196506 DOI: 10.1016/j.aquatox.2023.106555] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
The proficiency of microalgae to resist heavy metals has potential to be beneficial in resolving various environmental challenges. Global situations such as the need for cost-effective and ecological ways of remediation of contaminated water and for the development of bioenergy sources could employ microalgae. In a medium with the presence of heavy metals, microalgae utilize different mechanisms to uptake the metal and further detoxify it. Biosorption and the next process of bioaccumulation are two such major steps and they also include the assistance of different transporters at different stages of heavy metal tolerance. This capability has also proved to be efficient in eradicating many heavy metals like Chromium, Copper, Lead, Arsenic, Mercury, Nickel and Cadmium from the environment they are present in. This indicates the possibility of the application of microalgae as a biological way of remediating contaminated water. Heavy metal resistance quality also allows various microalgal species to contribute in the generation of biofuels like biodiesel and biohydrogen. Many research works have also explored the capacity of microalgae in nanotechnology for the formation of nanoparticles due to its relevant characteristics. Various studies have also revealed that biochar deduced from microalgae or a combination of biochar and microalgae can have wide applications specially in deprivation of heavy metals from an environment. This review focuses on the strategies adopted by microalgae, various transporters involved in the process of tolerating heavy metals and the applications where microalgae can participate owing to its ability to resist metals.
Collapse
Affiliation(s)
- Manami Chakravorty
- Department of Biotechnology, Dolphin (PG) Institute of Biomedical & Natural Sciences, Dehradun-248007, India
| | - Manisha Nanda
- Department of Biotechnology, Dolphin (PG) Institute of Biomedical & Natural Sciences, Dehradun-248007, India
| | - Bhawna Bisht
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Rohit Sharma
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
| | - Sanjay Kumar
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Abhilasha Mishra
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow 125412, Russian Federation
| | - P K Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, HP, India
| | - Vinod Kumar
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation.
| |
Collapse
|
4
|
Wang J, Tian Q, Cui L, Cheng J, Zhou H, Zhang Y, Peng A, Shen L. Bioimmobilization and transformation of chromium and cadmium in the fungi-microalgae symbiotic system. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130507. [PMID: 37055953 DOI: 10.1016/j.jhazmat.2022.130507] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 06/19/2023]
Abstract
Microalgae and fungi in the fungi-microalgae symbiotic system(FMSS) can solve the problems of deep purification of heavy metals in wastewater and harvesting of microalgae cell by synergistic interaction. Therefore, it is of great significance to use the FMSS for remediation of heavy metal pollution. However, at present, the immobilization and transformation mechanism of heavy metals in the FMSS is not clear, which limits the development and industrial application of the FMSS with high adsorption performance, high selectivity, and high tolerance. In this study, the FMSS constructed using Aspergillus funigatus and Synechocystis sp. PCC6803, was used as the research object to explore heavy metal adsorption performance. Under optimal conditions, the adsorption efficiencies of Cd(II) and Cr(VI) were as high as 90.02% and 80.03%, respectively. The adsorption process was controlled by both internal and external diffusion. Extracellular absorption was dominant, and intracellular absorption was secondary. XRD, XPS, SEM-EDX and TEM-EDX results revealed that ionic crystals and precipitates (Cd(OH)2, CdCO3, calcium oxalate crystals, Cr(OH)3, Cr2O3, and CrCl3) were formed after adsorption. The adsorption of Cr(VI) involved the reduction of Cr(VI). Functional groups, such as amino, carboxyl, aldehyde, and ether groups, on the cell surface also interact with heavy metal ions. To summarize, by constructing the FMSS, optimizing the symbiosis conditions, exploring the adsorption and accumulation rules of Cd(II) and Cr(VI) inside and outside the cells in the system, and revealing the molecular response mechanism, we were able to establish a theoretical basis for further understanding the interaction between the FMSS and heavy metals.
Collapse
Affiliation(s)
- Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Linlin Cui
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jinju Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Yejuan Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Anan Peng
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
5
|
Zheng Y, Zhang R, Zhu Y, Ao Q, Liu H, Li A, Lin L, Wang L. Salicylic acid improves Nasturtium officinale phytoremediation capability for cadmium-contaminated paddy soils. FRONTIERS IN PLANT SCIENCE 2022; 13:1059175. [PMID: 36507378 PMCID: PMC9730415 DOI: 10.3389/fpls.2022.1059175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Cadmium (Cd) contamination is a severe problem in paddy soils that has affected crops' safety. The present study aimed at remediating Cd-contaminated paddy soil by improving the phytoremediation capability of aquatic accumulator plants. METHODS We conducted an experiment to investigate the effects of salicylic acid (SA) on the growth and Cd phytoremediation capability of the aquatic accumulator plant Nasturtium officinale. RESULTS SA with the concentrations of 100, 150, and 200 mg/L increased the root and shoot biomass of N. officinale, while only 150 mg/L increased the chlorophyll a and b contents. SA increased the activities of peroxidase and catalase of N. officinale to a great extent, but decreased the superoxide dismutase activity and soluble protein content. SA also increased the root Cd content, shoot Cd content, root Cd extraction, and shoot Cd extraction to a large extent. At concentrations of 100, 150, and 200 mg/L, SA increased the shoot Cd extraction by 17.59%, 47.16%, and 43.27%, respectively, compared with the control. Moreover, SA concentration had a quadratic polynomial regression relationship with the root Cd extraction and shoot Cd extraction. The correlation and grey relational analyses revealed that root Cd extraction, shoot biomass, and root biomass were closely associated with shoot Cd extraction of N. officinale. CONCLUSION Thus, our results suggest that SA promoted the growth and improved the phytoremediation (extraction) capability of N. officinale, and 150 mg/L SA was the most suitable concentration.
Collapse
Affiliation(s)
- Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ran Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Zhu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiaoman Ao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Han Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Aihui Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Li Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Zhang R, Liu Q, Xu X, Liao M, Lin L, Hu R, Luo X, Wang Z, Wang J, Deng Q, Liang D, Xia H, Lv X, Tang Y, Wang X. An amino acid fertilizer improves the emergent accumulator plant Nasturtium officinale R. Br. phytoremediation capability for cadmium-contaminated paddy soils. FRONTIERS IN PLANT SCIENCE 2022; 13:1003743. [PMID: 36299780 PMCID: PMC9592069 DOI: 10.3389/fpls.2022.1003743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) contamination of paddy soil affects safe crop production. This study aimed to evaluate the effects of plant biostimulant amino acid fertilizer on the phytoremediation capability of an emergent accumulator plant Nasturtium officinale R. Br. for Cd-contaminated paddy soils. A pot study was carried out to study the effects of different concentrations of amino acid fertilizer on the Cd accumulation of N. officinale grown in Cd-contaminated paddy soil. The amino acid fertilizer increased the biomass of N. officinale. The amino acid fertilizer concentration exhibited a quadratic polynomial regression relationship with the root and shoot biomass. The fertilizer also increased the photosynthetic pigment (chlorophyll and carotenoid) contents, peroxidase (POD; EC 1.11.1.7) activity, and catalase (CAT; EC 1.11.1.6) activity of N. officinale, but decreased the soluble protein content and had no significant effect on the superoxide dismutase (SOD; EC 1.15.1.1) activity. Furthermore, the amino acid fertilizer increased the Cd content and Cd extraction of N. officinale. The shoot Cd extraction increased by 29.06%, 63.05%, 77.22%, and 17.40% at 1500-, 1200-, 900-, and 600-fold dilutions of the amino acid fertilizer, respectively, compared with the control. Moreover, the amino acid fertilizer promoted the Cd transport from the roots to shoots of N. officinale. The amino acid fertilizer concentration also exhibited a quadratic polynomial regression relationship with the root Cd content, shoot Cd content, root Cd extraction, and shoot Cd extraction, respectively. The correlation, grey relational, and path analyses revealed that the root biomass, shoot biomass, chlorophyll content, catalase activity, shoot Cd content, and root Cd extraction were closely associated with the shoot Cd extraction. Therefore, the amino acid fertilizer can promote Cd uptake and improve the phytoremediation capability of N. officinale to remediate Cd-contaminated paddy soils, and 900-fold dilution is the most suitable concentration.
Collapse
Affiliation(s)
- Ran Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qin Liu
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xiangting Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ming’an Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Rongping Hu
- Institute of Sichuan Edible Fungi, Chengdu, China
| | - Xian Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zhihui Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Evaluation of a Causative Species of Harmful Algal Blooming, Prorocentrum triestinum, as a Sustainable Source of Biosorption on Cadmium. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Biosorption is an effective method for removing heavy metal ions from wastewater. In the current study, the biosorption capacity of a microalgae Prorocentrum triestinum strain AD1 was investigated for cadmium removal. The efficient biomass concentration was found to be 5 g/L. Based on the Langmuir adsorption model, the maximum adsorption capacity (qmax) value of cadmium removal was found to be 0.0196 mmol/g. The investigation results of the AD1 biosorption kinetics showed that the effective contact time on biosorption was 3 h, and the adsorption kinetics fitted well with the pseudo-second-order model. The optimum pH of biosorption was found to be 5. On the other hand, HCl could act as an efficient desorbent for cadmium recovery from AD1, with an optimum concentration of 0.01 M. These results suggest that the biomass of P. triestinum has great potential for the removal of cadmium from wastewater as an efficient biosorbent.
Collapse
|
8
|
Dawiec-Liśniewska A, Podstawczyk D, Bastrzyk A, Czuba K, Pacyna-Iwanicka K, Okoro OV, Shavandi A. aNew trends in biotechnological applications of photosynthetic microorganisms. Biotechnol Adv 2022; 59:107988. [DOI: 10.1016/j.biotechadv.2022.107988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
|
9
|
Yan C, Qu Z, Wang J, Cao L, Han Q. Microalgal bioremediation of heavy metal pollution in water: Recent advances, challenges, and prospects. CHEMOSPHERE 2022; 286:131870. [PMID: 34403898 DOI: 10.1016/j.chemosphere.2021.131870] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
With the rapid economy development and population surge, the water resources available for direct use on the earth have been in shortage. Therefore, water pollution remediation inevitably becomes the focus of global attention. Aside from their capacity to fix and effectively control the emission of carbon dioxide thus achieve negative carbon emission, microalgae and its products modified by genetic engineering and other technologies also have a broad prospect in sewage treatment such as efficiently removing all kinds of pollutants in water and producing high-quality biofuels after use. Therefore, research on these organisms has gradually deepened in recent years. This paper summarizes the bioremediation mechanism of heavy metal ions in water by using microalgae and their modified products. The relevant research progresses since 2015 are critically reviewed and discussed. Challenges and prospects are also put forward for their industrial implementation.
Collapse
Affiliation(s)
- Chicheng Yan
- Miami College, Henan University, Kaifeng, 475004, China
| | - Zhengzhe Qu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jieni Wang
- School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng, 475004, China; School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Qiuxia Han
- Miami College, Henan University, Kaifeng, 475004, China; School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| |
Collapse
|
10
|
Yu Q, Li P, Li B, Zhang C, Zhang C, Ge Y. Effects of algal-bacterial ratio on the growth and cadmium accumulation of Chlorella salina-Bacillus subtilis consortia. J Basic Microbiol 2021; 62:518-529. [PMID: 34486742 DOI: 10.1002/jobm.202100314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 01/23/2023]
Abstract
Algae-bacteria consortia have been proven effective in the removal of metal pollutants, but the effects of algal-bacterial ratio in the metal accumulation and resistance by this symbiotic system have not been systematically investigated. In this study, we set up consortia with various ratios of Chlorella salina-Bacillus subtilis, determined their growth, Cd accumulation, levels of intracellular glutathione (GSH), extracellular polysaccharide, phosphorus (P) in the culture medium, and functional groups of consortia after Cd treatments (0.1, 0.5, 1 mg L-1 ) for 7 days. With the addition of B. subtilis in the C. salina culture, the dry weight and specific growth rate of the consortia significantly increased compared with C. salina alone, reaching 68.33 mg and 0.382 (mg L-1 ) d-1 respectively at the 1:4 algal-bacterial ratio with 1 mg L-1 Cd treatment. Maximum Cd removal (51.66%) was also observed upon the same Cd exposure and algal-bacterial ratio. Cadmium was mostly taken up into cells at 1 mg L-1 Cd whereas its adsorption dominated the accumulation when Cd was 0.1 and 0.5 mg L-1 . The amounts of extracellular polysaccharides, GSH, and P of the symbiotic system were also increased by the bacterial addition. Besides, Fouriertransform infrared (FTIR) spectroscopy analysis showed that functional groups like N-H, O-H, and P-O-C were involved in the Cd complexation. Taken together, a higher bacterial ratio promoted the Cd accumulation and detoxification by the C. salina-B. subtilis consortia through intra- and extracellular processes.
Collapse
Affiliation(s)
- Qingnan Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peihuan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Benwei Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chen Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|