1
|
Lopes Cavalcante L, Czaplinski EC, Maynard-Casely HE, Cable ML, Chaouche-Mechidal N, Hodyss R, Ennis C. Vacuum-ultraviolet irradiation of pyridine:acetylene ices relevant to Titan astrochemistry. Phys Chem Chem Phys 2024; 26:26842-26856. [PMID: 39405048 DOI: 10.1039/d4cp03437f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Nitrogen-containing polycyclic aromatic hydrocarbons (NPAHs) are important molecules for astrochemistry and prebiotic chemistry, as their occurrence spans from interstellar molecular clouds to planetary systems. Their formation has been previously explored in gas phase experiments, but the role of solid-state chemical reactions in their formation under cryogenic conditions remains elusive. Here, we explore the formation of NPAHs through vacuum ultraviolet (VUV) irradiation of pyridine:acetylene ices in amorphous and co-crystalline phases, with the aim to simulate conditions relevant to the interstellar medium and Titan's atmosphere. Our results show that the synthesis of ethynylpyridines from VUV-irradiated pyridine:acetylene amorphous ices is achievable at 18 K. In the co-crystal phase, photolysis at 110 K leads to the formation of NPAHs such as quinolizinium+ and precursors, reflecting a dynamical system under our conditions. In contrast, irradiation at 90 K under stable conditions did not produce volatile photoproducts. These results suggest that such chemical processes can occur in Titan's atmosphere and potentially in its stratosphere, where the co-condensation of these molecules can form composite ices. Concurrently, the formation of stable co-crystals can influence the depletion rates of pyridine, which suggests that these structures can be preserved and potentially delivered to Titan's surface. Our findings provide insights into the molecular diversity and chemical evolution of organic matter on Titan, crucial for future space exploration missions, such as the Dragonfly mission, which may uncover higher-order organics derived from pyridine precursors on Titan's surface.
Collapse
Affiliation(s)
| | - Ellen C Czaplinski
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
| | - Helen E Maynard-Casely
- Australian Centre for Neutron Scattering, ANSTO, Kirrawee, New South Wales 2232, Australia
| | - Morgan L Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
| | | | - Robert Hodyss
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
| | - Courtney Ennis
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
2
|
Johansen S, Park H, Wang LP, Crabtree KN. Reactant Discovery with an Ab Initio Nanoreactor: Exploration of Astrophysical N-Heterocycle Precursors and Formation Pathways. ACS EARTH & SPACE CHEMISTRY 2024; 8:1771-1783. [PMID: 39318708 PMCID: PMC11418024 DOI: 10.1021/acsearthspacechem.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/26/2024]
Abstract
The incorporation of nitrogen atoms into cyclic compounds is essential for terrestrial life; nitrogen-containing (N-)heterocycles make up DNA and RNA nucleobases, several amino acids, B vitamins, porphyrins, and other components of biomolecules. The discovery of these molecules on meteorites with non-terrestrial isotopic abundances supports the hypothesis of exogenous delivery of prebiotic material to early Earth; however, there has been no detection of these species in interstellar environments, indicating that there is a need for greater knowledge of their astrochemical formation and destruction pathways. Here, we present results of simulations of gas-phase pyrrole and pyridine formation from an ab initio nanoreactor, a first-principles molecular dynamics simulation method that accelerates reaction discovery by applying non-equilibrium forces that are agnostic to individual reaction coordinates. Using the nanoreactor in a retrosynthetic mode, starting with the N-heterocycle of interest and a radical leaving group, then considering the discovered reaction pathways in reverse, a rich landscape of N-heterocycle-forming reactivity can be found. Several of these reaction pathways, when mapped to their corresponding minimum energy paths, correspond to novel barrierless formation pathways for pyridine and pyrrole, starting from both detected and hypothesized astrochemical precursors. This study demonstrates how first-principles reaction discovery can build mechanistic knowledge in astrochemical environments as well as in early Earth models such as Titan's atmosphere where N-heterocycles have been tentatively detected.
Collapse
Affiliation(s)
| | | | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Kyle N. Crabtree
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
3
|
Mancini L, Vanuzzo G, Recio P, Caracciolo A, Faginas-Lago N, Rosi M, Casavecchia P, Balucani N. Unveiling the Reaction Mechanism of the N( 2D) + Pyridine Reaction: Ring-Contraction versus 7-Membered-Ring Formation Channels. J Phys Chem A 2024; 128:7177-7194. [PMID: 39141013 DOI: 10.1021/acs.jpca.4c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Despite the relevance of the reactions of the prototypical nitrogen-containing six-membered aromatic molecule (N-heterocyclic) of pyridine (C6H5N) in environmental science, astrochemistry, planetary science, prebiotic chemistry, and materials science, few experimental/theoretical studies exist on the bimolecular reactions involving pyridine and neutral atomic/molecular radicals. We report a combined experimental and theoretical study on the elementary reaction of pyridine with excited nitrogen atoms, N(2D), aimed at providing information about the primary reaction products and their branching fractions (BFs). From previous crossed molecular beam (CMB) experiments with mass-spectrometric detection and present synergistic calculations of the reactive potential energy surface (PES) and product BFs we have unveiled the reaction mechanism. It is found that the reaction proceeds via N(2D) barrierless addition to pyridine that, via bridged intermediates followed by N atom "sliding" into the ring, leads to 7-membered-ring structures. They further evolve, mainly via ring-contraction mechanisms toward 5-membered-ring radical products and, to a smaller extent, via H-displacement mechanisms toward 7-membered-ring isomeric products and their isomers. Using the theoretical statistical estimates, an improved fit of the experimental data previously reported has been obtained, leading to the following results for the dominant product channels: C4H4N (pyrrolyl) + HCN (BF = 0.61 ± 0.20), C3H3N2 (1H-imidazolyl/1H-pyrazolyl) + C2H2 (BF = 0.11 ± 0.06), and C5H4N2 (7-membered-ring molecules or pyrrole carbonitriles) + H (BF = 0.28 ± 0.10). The ring-contraction product channels C4H4N (pyrrolyl) + HCN, C3H3N2 (1H-imidazolyl) + C2H2, C3H3N2 (1H-pyrazolyl) + C2H2, and C5H5 (cyclopentadienyl) + N2 have statistical BFs of 0.54, 0.09, 0.11, and 0.07, respectively. Among the H-displacement channels, the cyclic-CHCHCHCHNCN + H channel and cyclic-CHCHCHCHCN2 + H are theoretically predicted to have a comparable BF (0.07 and 0.06, respectively), while the other isomeric 7-membered-ring molecule + H channel has a BF of 0.03. Pyrrole-carbonitriles and 1H-ethynyl-1H-imidazole (+ H) isomeric channels have an overall BF of 0.03. Implications for the chemistry of Saturn's moon Titan and prebiotic chemistry, as well as for understanding the N-doping of graphene or carbon nanotubes, are noted.
Collapse
Affiliation(s)
- Luca Mancini
- Dipartimento di Chimica Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Gianmarco Vanuzzo
- Dipartimento di Chimica Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Pedro Recio
- Dipartimento di Chimica Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Adriana Caracciolo
- Dipartimento di Chimica Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Noelia Faginas-Lago
- Dipartimento di Chimica Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
- Master-Tec Srl, 06128 Perugia, Italy
| | - Marzio Rosi
- Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Perugia, 06125 Perugia, Italy
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), 06123 Perugia, Italy
| | - Piergiorgio Casavecchia
- Dipartimento di Chimica Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), 06123 Perugia, Italy
| | - Nadia Balucani
- Dipartimento di Chimica Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| |
Collapse
|
4
|
Xu X, Zhu YK, Dai CM, Xu J, Jian J. Synthesis and characterization of azaborepin radicals in solid neon through boron-mediated C-N bond cleavage of pyridine. Phys Chem Chem Phys 2024; 26:11048-11055. [PMID: 38528841 DOI: 10.1039/d4cp00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The reactivity of pyridine is a complex topic due to its unique electronic structure. The reactions of atomic boron with pyridine molecules in solid neon have been investigated using matrix isolation infrared absorption spectroscopy. Three products (marked as A, B, and C) were observed and characterized through 10B, D and 15N isotopic substitution pyridine regents as well as quantum chemical calculations. In the reaction, the ground-state boron atom can attack the lone pair electrons of the nitrogen atom in the pyridine molecule, resulting in the formation of a 1-boropyridinyl radical (A). Alternatively, addition to the aromatic π-system of pyridine can occur in a [1,4] type, leading to the formation of a B[η2(1,4)-C5H5N] complex (B). Under UV-visible light (280 < λ < 580 nm) irradiation, these two compounds can further undergo photo-isomerization to form BN-embedded seven-membered azaborepin compounds (C). The observation of species A, B, and the subsequent photo-isomerization to species C is consistent with theoretical predictions, indicating that these reactions are kinetically favorable. This research provides valuable insights into the future design and synthesis of corresponding BN heterocyclic derivatives.
Collapse
Affiliation(s)
- Xin Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Yi-Kang Zhu
- Xiaoshan Campus, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China
| | - Chuan-Ming Dai
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Jiaping Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Jiwen Jian
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
- Xiaoshan Campus, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China
| |
Collapse
|
5
|
Gelfand N, Komarova K, Remacle F, Levine RD. Nonadiabatic quantum dynamics explores non-monotonic photodissociation branching of N 2 into the N( 4S) + N( 2D) and N( 4S) + N( 2P) product channels. Phys Chem Chem Phys 2024; 26:3274-3284. [PMID: 38197167 DOI: 10.1039/d3cp04854c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Vacuum ultraviolet (VUV) photodissociation of N2 molecules is a source of reactive N atoms in the interstellar medium. In the energy range of VUV optical excitation of N2, the N-N triple bond cleavage leads to three types of atoms: ground-state N(4S) and excited-state N(2P) and N(2D). The latter is the highest reactive and it is believed to be the primary participant in reactions with hydrocarbons in Titan's atmosphere. Experimental studies have observed a non-monotonic energy dependence and non-statistical character of the photodissociation of N2. This implies different dissociation pathways and final atomic products for different wavelength regions in the sunlight spectrum. We here apply ab initio quantum chemical and nonadiabatic quantum dynamical techniques to follow the path of an electronic state from the excitation of a particular singlet 1Σ+u and 1Πu vibronic level of N2 to its dissociation into different atomic products. We simulate dynamics for two isotopomers of the nitrogen molecule, 14N2 and 14N15N for which experimental data on the branching are available. Our computations capture the non-monotonic energy dependence of the photodissociation branching ratios in the energy range 108 000-116 000 cm-1. Tracing the quantum dynamics in a bunch of electronic states enables us to identify the key components that determine the efficacy of singlet to triplet population transfer and therefore predissociation lifetimes and branching ratios for different energy regions.
Collapse
Affiliation(s)
- Natalia Gelfand
- The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ksenia Komarova
- The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Francoise Remacle
- The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Theoretical Physical Chemistry, UR MolSys B6c, University of Liège, B4000 Liège, Belgium
| | - R D Levine
- The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Balucani N, Caracciolo A, Vanuzzo G, Skouteris D, Rosi M, Pacifici L, Casavecchia P, Hickson KM, Loison JC, Dobrijevic M. An experimental and theoretical investigation of the N( 2D) + C 6H 6 (benzene) reaction with implications for the photochemical models of Titan. Faraday Discuss 2023; 245:327-351. [PMID: 37293920 DOI: 10.1039/d3fd00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report on a combined experimental and theoretical investigation of the N(2D) + C6H6 (benzene) reaction, which is of relevance in the aromatic chemistry of the atmosphere of Titan. Experimentally, the reaction was studied (i) under single-collision conditions by the crossed molecular beams (CMB) scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy (Ec) of 31.8 kJ mol-1 to determine the primary products, their branching fractions (BFs), and the reaction micromechanism, and (ii) in a continuous supersonic flow reactor to determine the rate constant as a function of temperature from 50 K to 296 K. Theoretically, electronic structure calculations of the doublet C6H6N potential energy surface (PES) were performed to assist the interpretation of the experimental results and characterize the overall reaction mechanism. The reaction is found to proceed via barrierless addition of N(2D) to the aromatic ring of C6H6, followed by formation of several cyclic (five-, six-, and seven-membered ring) and linear isomeric C6H6N intermediates that can undergo unimolecular decomposition to bimolecular products. Statistical estimates of product BFs on the theoretical PES were carried out under the conditions of the CMB experiments and at the temperatures relevant for Titan's atmosphere. In all conditions the ring-contraction channel leading to C5H5 (cyclopentadienyl) + HCN is dominant, while minor contributions come from the channels leading to o-C6H5N (o-N-cycloheptatriene radical) + H, C4H4N (pyrrolyl) + C2H2 (acetylene), C5H5CN (cyano-cyclopentadiene) + H, and p-C6H5N + H. Rate constants (which are close to the gas kinetic limit at all temperatures, with the recommended value of 2.19 ± 0.30 × 10-10 cm3 s-1 over the 50-296 K range) and BFs have been used in a photochemical model of Titan's atmosphere to simulate the effect of the title reaction on the species abundances as a function of the altitude.
Collapse
Affiliation(s)
- Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy.
| | - Adriana Caracciolo
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy.
| | - Gianmarco Vanuzzo
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy.
| | | | - Marzio Rosi
- Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Perugia, 06100, Perugia, Italy
| | - Leonardo Pacifici
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy.
| | - Piergiorgio Casavecchia
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy.
| | - Kevin M Hickson
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | | | | |
Collapse
|
7
|
Vanuzzo G, Mancini L, Pannacci G, Liang P, Marchione D, Recio P, Tan Y, Rosi M, Skouteris D, Casavecchia P, Balucani N, Hickson KM, Loison JC, Dobrijevic M. Reaction N( 2D) + CH 2CCH 2 (Allene): An Experimental and Theoretical Investigation and Implications for the Photochemical Models of Titan. ACS EARTH & SPACE CHEMISTRY 2022; 6:2305-2321. [PMID: 36303717 PMCID: PMC9589905 DOI: 10.1021/acsearthspacechem.2c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
We report on a combined experimental and theoretical investigation of the N(2D) + CH2CCH2 (allene) reaction of relevance in the atmospheric chemistry of Titan. Experimentally, the reaction was investigated (i) under single-collision conditions by the crossed molecular beams (CMB) scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy (E c) of 33 kJ/mol to determine the primary products and the reaction micromechanism and (ii) in a continuous supersonic flow reactor to determine the rate constant as a function of temperature from 50 to 296 K. Theoretically, electronic structure calculations of the doublet C3H4N potential energy surface (PES) were performed to assist the interpretation of the experimental results and characterize the overall reaction mechanism. The reaction is found to proceed via barrierless addition of N(2D) to one of the two equivalent carbon-carbon double bonds of CH2CCH2, followed by the formation of several cyclic and linear isomeric C3H4N intermediates that can undergo unimolecular decomposition to bimolecular products with elimination of H, CH3, HCN, HNC, and CN. The kinetic experiments confirm the barrierless nature of the reaction through the measurement of rate constants close to the gas-kinetic rate at all temperatures. Statistical estimates of product branching fractions (BFs) on the theoretical PES were carried out under the conditions of the CMB experiments at room temperature and at temperatures (94 and 175 K) relevant for Titan. Up to 14 competing product channels were statistically predicted with the main ones at E c = 33 kJ/mol being formation of cyclic-CH2C(N)CH + H (BF = 87.0%) followed by CHCCHNH + H (BF = 10.5%) and CH2CCNH + H (BF = 1.4%) the other 11 possible channels being negligible (BFs ranging from 0 to 0.5%). BFs under the other conditions are essentially unchanged. Experimental dynamical information could only be obtained on the overall H-displacement channel, while other possible channels could not be confirmed within the sensitivity of the method. This is also in line with theoretical predictions as the other possible channels are predicted to be negligible, including the HCN/HNC + C2H3 (vinyl) channels (overall BF < 1%). The dynamics and product distributions are dramatically different with respect to those observed in the isomeric reaction N(2D) + CH3CCH (propyne), where at a similar E c the main product channels are CH2NH (methanimine) + C2H (BF = 41%), c-C(N)CH + CH3 (BF = 32%), and CH2CHCN (vinyl cyanide) + H (BF = 12%). Rate coefficients (the recommended value is 1.7 (±0.2) × 10-10 cm3 s-1 over the 50-300 K range) and BFs have been used in a photochemical model of Titan's atmosphere to simulate the effect of the title reaction on the species abundance (including any new products formed) as a function of the altitude.
Collapse
Affiliation(s)
- Gianmarco Vanuzzo
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Luca Mancini
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Giacomo Pannacci
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Pengxiao Liang
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Demian Marchione
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Pedro Recio
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Yuxin Tan
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Marzio Rosi
- Dipartimento
di Ingegneria Civile e Ambientale, Università
degli Studi di Perugia, 06100 Perugia, Italy
| | | | - Piergiorgio Casavecchia
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Nadia Balucani
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Kevin M. Hickson
- Université
de Bordeaux, Institut des Sciences Moléculaires,
UMR 5255, F-33400 Talence, France
- CNRS,
Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France
| | - Jean-Christophe Loison
- Université
de Bordeaux, Institut des Sciences Moléculaires,
UMR 5255, F-33400 Talence, France
- CNRS,
Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France
| | - Michel Dobrijevic
- Laboratoire
d’Astrophysique de Bordeaux, Université
de Bordeaux, CNRS, B18N,
allée Geoffroy Saint-Hilaire, F-33615 Pessac, France
| |
Collapse
|
8
|
Vanuzzo G, Marchione D, Mancini L, Liang P, Pannacci G, Recio P, Tan Y, Rosi M, Skouteris D, Casavecchia P, Balucani N. The N( 2D) + CH 2CHCN (Vinyl Cyanide) Reaction: A Combined Crossed Molecular Beam and Theoretical Study and Implications for the Atmosphere of Titan. J Phys Chem A 2022; 126:6110-6123. [PMID: 36053010 PMCID: PMC9483977 DOI: 10.1021/acs.jpca.2c04263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The reaction of electronically excited nitrogen atoms,
N(2D), with vinyl cyanide, CH2CHCN, has been
investigated
under single-collision conditions by the crossed molecular beam (CMB)
scattering method with mass spectrometric detection and time-of-flight
(TOF) analysis at the collision energy, Ec, of 31.4 kJ/mol. Synergistic electronic structure calculations of
the doublet potential energy surface (PES) have been performed to
assist in the interpretation of the experimental results and characterize
the overall reaction micromechanism. Statistical (Rice–Ramsperger–Kassel–Marcus,
RRKM) calculations of product branching fractions (BFs) on the theoretical
PES have been carried out at different values of temperature, including
the one corresponding to the temperature (175 K) of Titan’s
stratosphere and at a total energy corresponding to the Ec of the CMB experiment. According to our theoretical
calculations, the reaction is found to proceed via barrierless addition
of N(2D) to the carbon–carbon double bond of CH2=CH–CN, followed by the formation of cyclic
and linear intermediates that can undergo H, CN, and HCN elimination.
In competition, the N(2D) addition to the CN group is also
possible via a submerged barrier, leading ultimately to N2 + C3H3 formation, the most exothermic of all
possible channels. Product angular and TOF distributions have been
recorded for the H-displacement channels leading to the formation
of a variety of possible C3H2N2 isomeric
products. Experimentally, no evidence of CN, HCN, and N2 forming channels was observed. These findings were corroborated
by the theory, which predicts a variety of competing product channels,
following N(2D) addition to the double bond, with the main
ones, at Ec = 31.4 kJ/mol, being six isomeric
H forming channels: c-CH(N)CHCN + H (BF = 35.0%), c-CHNCHCN + H (BF = 28.1%), CH2NCCN + H (BF =
26.3%), c-CH2(N)CCN(cyano-azirine) + H
(BF = 7.4%), trans-HNCCHCN + H (BF = 1.6%), and cis-HNCCHCN + H (BF = 1.3%), while C–C bond breaking
channels leading to c-CH2(N)CH(2H-azirine)
+ CN and c-CH2(N)C + HCN are predicted
to be negligible (0.02% and 0.2%, respectively). The highly exothermic
N2 + CH2CCH (propargyl) channel is also predicted
to be negligible because of the very high isomerization barrier from
the initial addition intermediate to the precursor intermediate able
to lead to products. The predicted product BFs are found to have,
in general, a very weak energy dependence. The above cyclic and linear
products containing an additional C–N bond could be potential
precursors of more complex, N-rich organic molecules that contribute
to the formation of the aerosols on Titan’s upper atmosphere.
Overall, the results are expected to have a significant impact on
the gas-phase chemistry of Titan’s atmosphere and should be
properly included in the photochemical models.
Collapse
Affiliation(s)
- Gianmarco Vanuzzo
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Demian Marchione
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Luca Mancini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Pengxiao Liang
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Giacomo Pannacci
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Pedro Recio
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Yuxin Tan
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Marzio Rosi
- Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Perugia, 06125 Perugia, Italy
| | | | - Piergiorgio Casavecchia
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| |
Collapse
|
9
|
Meyer KS, Westerfield JH, Johansen SL, Keane J, Wannenmacher AC, Crabtree KN. Rotational and Vibrational Spectra of the Pyridyl Radicals: A Coupled-Cluster Study. J Phys Chem A 2022; 126:3185-3197. [PMID: 35549287 DOI: 10.1021/acs.jpca.2c01761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyridyl is a prototypical nitrogen-containing aromatic radical that may be a key intermediate in the formation of nitrogen-containing aromatic molecules under astrophysical conditions. On meteorites, a variety of complex molecules with nitrogen-containing rings have been detected with nonterrestrial isotopic abundances, and larger nitrogen-containing polycyclic aromatic hydrocarbons (PANHs) have been proposed to be responsible for certain unidentified infrared emission bands in the interstellar medium. In this work, the three isomers of pyridyl (2-, 3-, and 4-pyridyl) have been investigated with coupled cluster methods. For each species, structures were optimized at the CCSD(T)/cc-pwCVTZ level of theory and force fields were calculated at the CCSD(T)/ANO0 level of theory. Second-order vibrational perturbation theory (VPT2) was used to derive anharmonic vibrational frequencies and vibrationally corrected rotational constants, and resonances among vibrational states below 3500 cm-1 were treated variationally with the VPT2+K method. The results yield a complete set of spectroscopic parameters needed to simulate the pure rotational spectrum of each isomer, including electron-spin, spin-spin, and nuclear hyperfine interactions, and the calculated hyperfine parameters agree well with the limited available data from electron paramagnetic resonance spectroscopy. For the handful of experimentally measured vibrational frequencies determined from photoelectron spectroscopy and matrix isolation spectroscopy, the typical agreement is comparable to experimental uncertainty. The predicted parameters for rotational spectroscopy reported here can guide new experimental investigations into the yet-unobserved rotational spectra of these radicals.
Collapse
Affiliation(s)
- Kelly S Meyer
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - John H Westerfield
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sommer L Johansen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jasmine Keane
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Anna C Wannenmacher
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Kyle N Crabtree
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
10
|
Wasowicz TJ. Neutral Dissociation of Pyridine Evoked by Irradiation of Ionized Atomic and Molecular Hydrogen Beams. Int J Mol Sci 2021; 23:205. [PMID: 35008633 PMCID: PMC8745593 DOI: 10.3390/ijms23010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
The interactions of ions with molecules and the determination of their dissociation patterns are challenging endeavors of fundamental importance for theoretical and experimental science. In particular, the investigations on bond-breaking and new bond-forming processes triggered by the ionic impact may shed light on the stellar wind interaction with interstellar media, ionic beam irradiations of the living cells, ion-track nanotechnology, radiation hardness analysis of materials, and focused ion beam etching, deposition, and lithography. Due to its vital role in the natural environment, the pyridine molecule has become the subject of both basic and applied research in recent years. Therefore, dissociation of the gas phase pyridine (C5H5N) into neutral excited atomic and molecular fragments following protons (H+) and dihydrogen cations (H2+) impact has been investigated experimentally in the 5-1000 eV energy range. The collision-induced emission spectroscopy has been exploited to detect luminescence in the wavelength range from 190 to 520 nm at the different kinetic energies of both cations. High-resolution optical fragmentation spectra reveal emission bands due to the CH(A2Δ→X2Πr; B2Σ+→X2Πr; C2Σ+→X2Πr) and CN(B2Σ+→X2Σ+) transitions as well as atomic H and C lines. Their spectral line shapes and qualitative band intensities are examined in detail. The analysis shows that the H2+ irradiation enhances pyridine ring fragmentation and creates various fragments more pronounced than H+ cations. The plausible collisional processes and fragmentation pathways leading to the identified products are discussed and compared with the latest results obtained in cation-induced fragmentation of pyridine.
Collapse
Affiliation(s)
- Tomasz J Wasowicz
- Division of Complex Systems Spectroscopy, Institute of Physics and Applied Computer Science, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
11
|
Mancini L, Vanuzzo G, Marchione D, Pannacci G, Liang P, Recio P, Rosi M, Skouteris D, Casavecchia P, Balucani N. The Reaction N( 2D) + CH 3CCH (Methylacetylene): A Combined Crossed Molecular Beams and Theoretical Investigation and Implications for the Atmosphere of Titan. J Phys Chem A 2021; 125:8846-8859. [PMID: 34609869 PMCID: PMC8521525 DOI: 10.1021/acs.jpca.1c06537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The reaction of excited
nitrogen atoms N(2D) with CH3CCH (methylacetylene)
was investigated under single-collision
conditions by the crossed molecular beams (CMB) scattering method
with mass spectrometric detection and time-of-flight analysis at the
collision energy (Ec) of 31.0 kJ/mol.
Synergistic electronic structure calculations of the doublet potential
energy surface (PES) were performed to assist the interpretation of
the experimental results and characterize the overall reaction micromechanism.
Theoretically, the reaction is found to proceed via a barrierless addition of N(2D) to the carbon–carbon
triple bond of CH3CCH and an insertion of N(2D) into the CH bond of the methyl group, followed
by the formation of cyclic and linear intermediates that can undergo
H, CH3, and C2H elimination or isomerize to
other intermediates before unimolecularly decaying to a variety of
products. Kinetic calculations for addition and insertion mechanisms
and statistical (Rice-Ramsperger-Kassel-Marcus) computations of product
branching fractions (BFs) on the theoretical PES were performed at
different values of total energy, including the one corresponding
to the temperature (175 K) of Titan’s stratosphere and that
of the CMB experiment. Up to 14 competing product channels were statistically
predicted, with the main ones, at Ec =
31.0 kJ/mol, being the formation of CH2NH (methanimine)
+ C2H (ethylidyne) (BF = 0.41), c-C(N)CH
+ CH3 (BF = 0.32), CH2CHCN (acrylonitrile) +
H (BF = 0.12), and c-CH2C(N)CH + H (BF
= 0.04). Of the 14 possible channels, seven correspond to H displacement
channels of different exothermicity, for a total H channel BF of ∼0.25
at Ec = 31.0 kJ/mol. Experimentally, dynamical
information could only be obtained about the overall H channels. In
particular, the experiment corroborates the formation of acrylonitrile
+ H, which is the most exothermic of all 14 reaction channels and
is theoretically calculated to be the dominant H-forming channel (BF
= 0.12). The products containing a novel C–N bond could be
potential precursors to form other nitriles (C2N2, C3N) or more complex organic species containing N atoms
in planetary atmospheres, such as those of Titan and Pluto. Overall,
the results are expected to have a potentially significant impact
on the understanding of the gas-phase chemistry of Titan’s
atmosphere and the modeling of that atmosphere.
Collapse
Affiliation(s)
- Luca Mancini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Gianmarco Vanuzzo
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Demian Marchione
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Giacomo Pannacci
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Pengxiao Liang
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Pedro Recio
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Marzio Rosi
- Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Perugia, 06125 Perugia, Italy
| | | | - Piergiorgio Casavecchia
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| |
Collapse
|