1
|
Iqbal M, Hussain A, Naz A, Hussain R, Yar M, Ayub K, Shah Gilani MRH, Imran M, Assiri MA. Tailoring the solar cell efficiency of Y-series based non-fullerene acceptors through end cap modification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122322. [PMID: 36652802 DOI: 10.1016/j.saa.2023.122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Y-series-based non-fullerene acceptors (NFAs) have achieved significant deliberation by chemists and physicists because the promising optical and photochemical properties associated with high-performance OSCs can be further tuned through end-capped modification. In this work, such modifications of Y-series benzothiadiazole-based NFAs were accomplished theoretically to propose new acceptors for photovoltaic cells (PVCs). The recently synthesized Y-series non-fullerene acceptor m-BTP-PhC6 was taken as a reference acceptor. We designed five new acceptors (BTP1-BTP5) through the structural modification at both ends of acceptor groups and evaluated their performance by applying DFT and TD-DFT. The newly engineered molecules exhibited a narrower bandgap (Eg) than the reference (R) resulting in better intramolecular charge transfer (ICT). Further, the designed acceptors expressed the maximum absorption in the region of 600-800 nm revealing a redshift in their absorption spectrum. Low excitation energy and low exciton binding energy were noted for designed acceptors confirming them as better candidates for high PCE of solar cells. Low reorganizational energy for the mobility of holes and electrons was also observed for the designed molecules, indicating improved charge transfer properties. The newly tailored acceptor BTP4 was found to be the promising candidate among all acceptors because of lower bandgap, lower exciton binding energy, reorganizational energy, and redshift of the absorption spectrum. The complex analysis of BTP4 with donor polymer PTB7-Th and PM6 was executed at the same DFT level. Furthermore, FMOs studies showed relatively rich electron density in the acceptor groups of LUMO as compared to the reference molecule. The overall theoretical results of this study showed that the designed acceptors played a productive and effective role in uplifting the efficiency of fullerene-free energy devices.
Collapse
Affiliation(s)
- Muniba Iqbal
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Asma Naz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Education, DG Khan Campus, Pakistan
| | - Muhammad Yar
- Department of Chemistry, COMSATS University, Abbottabad, Pakistan.
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad, Pakistan
| | - M Rehan H Shah Gilani
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O.Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O.Box 9004, Abha 61514, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O.Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O.Box 9004, Abha 61514, Saudi Arabia
| |
Collapse
|
2
|
Arshad M, Arshad S, haq HU, Janjhi FA, Khan MS, Tariq MA, Hassan T, Mehboob MY. In Silico modeling and exploration of new acceptor molecules with enhanced power conversion efficiency for high-performance organic solar cell applications. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.124018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|