1
|
Golestannezhad N, Divsalar A, Badalkhani-Khamseh F, Rasouli M, Seyedarabi A, Ghalandari B, Ding X, Goli F, Bekeschus S, Movahedi AAM, Moghadam ME. Oxali-palladium nanoparticle synthesis, characterization, protein binding, and apoptosis induction in colorectal cancer cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:4. [PMID: 38206473 PMCID: PMC10784377 DOI: 10.1007/s10856-023-06766-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
This paper focuses on the synthesis of nano-oxali-palladium coated with turmeric extract (PdNPs) using a green chemistry technique based on the reduction in the Pd (II) complex by phytochemicals inherent in turmeric extract. PdNPs were examined and characterized using Field Emission Scanning Electron Microscopy (FESEM), Dynamic Light Scattering (DLS), Fourier Transform Infrared (FTIR), and Atomic Force Microscopy (AFM). Using different spectroscopic and molecular dynamics simulations, a protein-binding analysis of the produced nanoparticle was conducted by observing its interaction with human serum albumin (HSA). Lastly, the cytotoxic effects and apoptotic processes of PdNPs were studied against the HCT116 human colorectal cell line using the MTT assay and flow cytometry tests. According to the findings, PdNPs with spherical and homogenous morphology and a size smaller than 100 nm were generated. In addition, they can induce apoptosis in colorectal cancer cells in a dose-dependent manner with a lower Cc50 (78 µL) than cisplatin and free oxali-palladium against HCT116 cells. The thermodynamic characteristics of protein binding of nanoparticles with HSA demonstrated that PdNPs had a great capacity for quenching and interacting with HSA through hydrophobic forces. In addition, molecular dynamics simulations revealed that free oxali-palladium and PdNP attach to the same area of HSA via non-covalent interactions. It is conceivable to indicate that the synthesized PdNPs are a potential candidate for the construction of novel, nature-based anticancer treatments with fewer side effects and a high level of eco-friendliness.
Collapse
Affiliation(s)
- Nasim Golestannezhad
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, 49 Dr. Mofatteh Ave, 31979-37551, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, 49 Dr. Mofatteh Ave, 31979-37551, Tehran, Iran.
| | - Farideh Badalkhani-Khamseh
- Department of Physical Chemistry, Faculty of Sciences, Tarbiat Modares University, Jalale-Al-Ahmad Ave, P.O. Box 14117-13116, Tehran, Iran
| | - Milad Rasouli
- Department of Physics, Kharazmi University, 49 Dr. Mofatteh Ave, Tehran, 15614, Iran
- Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Jalale-Al-Ahmad Ave, 1411713137, Tehran, Iran
| | - Arefeh Seyedarabi
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, 1417614418, Iran
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fatemeh Goli
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, 49 Dr. Mofatteh Ave, 31979-37551, Tehran, Iran
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | | | - Mahboube Eslami Moghadam
- Chemistry & Chemical Engineering Research Center of Iran, Pajohesh Blvd,17th Km of Tehran-Karaj Highway, 1497716320, Tehran, Iran
| |
Collapse
|
2
|
Basak S, Haydar MS, Sikdar S, Ali S, Mondal M, Shome A, Sarkar K, Roy S, Roy MN. Phase variation of manganese oxide in the MnO@ZnO nanocomposite with calcination temperature and its effect on structural and biological activities. Sci Rep 2023; 13:21542. [PMID: 38057479 PMCID: PMC10700637 DOI: 10.1038/s41598-023-48695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Having powerful antibacterial and antioxidant effects, zinc oxide and manganese oxide nanomaterials are of great interest. Here we have synthesized manganese oxide decorated zinc oxide (MZO) nanocomposites by co-precipitation method, calcined at different temperatures (300-750 °C) and studied various properties. Here the crystalline structure of the nanocomposite and phase change of the manganese oxide are observed with calcination temperature. The average crystalline size increases and the dislocation density and microstrain decrease with the increase in calcined temperature for the same structural features. The formation of composites was confirmed by XRD pattern and SEM images. EDAX spectra proved the high purity of the composites. Here, different biological properties change with the calcination temperature for different shapes, sizes and structures of the nanocomposite. Nanomaterial calcined at 750 °C provides the best anti-microbial activity against Escherichia coli, Salmonella typhimurium, Shigella flexneri (gram-negative), Bacillus subtilis and Bacillus megaterium (gram-positive) bacterial strain at 300 µg/mL concentration. The nanomaterial with calcination temperatures of 300 °C and 450 °C provided better antioxidant properties.
Collapse
Affiliation(s)
- Shatarupa Basak
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Md Salman Haydar
- Department of Botany, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Suranjan Sikdar
- Department of Chemistry, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal, 732141, India
| | - Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Modhusudan Mondal
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Ankita Shome
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Kushankur Sarkar
- Department of Botany, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
3
|
Green Synthesized Copper Assisted Iron Oxide Nanozyme for the Efficient Elimination of Industrial Pollutant via Peroxodisulfate Activation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
A Combined Physicochemical and Computational Investigation of the Inclusion Behaviour of 3-(1-Naphthyl)-D-alanine Hydrochloride insights into β-Cyclodextrin. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
5
|
Basak S, Sikdar S, Ali S, Mondal M, Roy D, Dakua VK, Roy MN. Synthesis and characterization of Mo xFe 1−xO nanocomposites for the ultra-fast degradation of methylene blue via a Fenton-like process: a green approach. NEW J CHEM 2022. [DOI: 10.1039/d2nj02720h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A detailed degradation study of methylene blue within 22 minutes by the green synthesis of MoxFe1−xO nanocomposites using Punica granatum peel extract.
Collapse
Affiliation(s)
- Shatarupa Basak
- Department of Chemistry, University of North Bengal, Darjeeling-734013, West Bengal, India
| | - Suranjan Sikdar
- Department of Chemistry, Govt. General Degree College, Kushmandi, Dakshin Dinajpur-733121, West Bengal, India
| | - Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling-734013, West Bengal, India
| | - Modhusudan Mondal
- Department of Chemistry, University of North Bengal, Darjeeling-734013, West Bengal, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling-734013, West Bengal, India
| | - Vikas Kumar Dakua
- Department of Chemistry, Alipurduar University, Alipurduar-736122, West Bengal, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling-734013, West Bengal, India
- Alipurduar University, Alipurduar-736122, West Bengal, India
| |
Collapse
|