1
|
Singh AK, Agrahari S, Gautam RK, Tiwari I. A highly efficient NiCo 2O 4 decorated g-C 3N 4 nanocomposite for screen-printed carbon electrode based electrochemical sensing and adsorptive removal of fast green dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67339-67354. [PMID: 37837595 DOI: 10.1007/s11356-023-30373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Herein, we demonstrate the preparation and application of NiCo2O4 decorated over a g-C3N4-based novel nanocomposite (NiCo2O4@g-C3N4). The prepared material was well characterized through several physicochemical techniques, including FT-IR, XRD, SEM, and TEM. The electrochemical characterizations via electrochemical impedance spectroscopy show the low electron transfer resistance of NiCo2O4@g-C3N4 owing to the successful incorporation of NiCo2O4 nanoparticles on the sheets of g-C3N4. NiCo2O4@g-C3N4 nanocomposite was employed in the fabrication of a screen-printed carbon electrode-based innovative electrochemical sensing platform and the adsorptive removal of a food dye, i.e., fast green FCF dye (FGD). The electrochemical oxidation of FGD at the developed NiCo2O4@g-C3N4 nanocomposite modified screen-printed carbon electrode (NiCo2O4@g-C3N4/SPCE) was observed at an oxidation potential of 0.65 V. A wide dual calibration range for electrochemical determination of FGD was successfully established at the prepared sensing platform, showing an excellent LOD of 0.13 µM and sensitivity of 0.6912 µA.µM-1.cm-2 through differential pulse voltammetry. Further, adsorbent dose, pH, contact time, and temperature were optimized to study the adsorption phenomena. The adsorption thermodynamics, isotherm, and kinetics were also investigated for efficient removal of FGD at NiCo2O4@g-C3N4-based adsorbents. The adsorption phenomenon of FGD on NiCo2O4@g-C3N4 was best fitted (R2 = 0.99) with the Langmuir and Henry model, and the corresponding value of Langmuir adsorption efficiency (qm) was 3.72 mg/g for the removal of FGD. The reaction kinetics for adsorption phenomenon were observed to be pseudo-second order. The sensitive analysis of FGD in a real sample was also studied.
Collapse
Affiliation(s)
- Ankit Kumar Singh
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shreanshi Agrahari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ravindra Kumar Gautam
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ida Tiwari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Niyas K, Richard B, Ankitha M, Rasheed PA. Sea urchin nanostructured nickel cobaltite modified carbon cloth integrated wearable patches for the on-site detection of the immunosuppressant drug mycophenolate mofetil. Analyst 2024; 149:3615-3624. [PMID: 38775016 DOI: 10.1039/d4an00592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Mycophenolate mofetil (MpM) is a medication used to prevent the rejection of transplanted organs, particularly in kidney, heart, and liver transplant surgeries. It is extremely important to be conscious that MpM can raise the risk of severe infections and some cancers if it exceeds the recommended dose while lower doses will result in organ rejections. So, it is essential to monitor the dosage of MpM in real time in the micromolar range. In this work, we have synthesized 3-aminopropyltriethoxysilane (APTES) functionalized nickel cobaltite (NiCo2O4) and this amino functionalization was chosen to enhance the stability and electrochemical activity of NiCo2O4. The enhanced activity of NiCo2O4 was used for developing an electrochemical sensor for the detection of MpM. APTES functionalized NiCo2O4 was coated on carbon cloth and used as the working electrode. Surface functionalization with APTES on NiCo2O4 was aimed at augmenting the adsorption/interaction of MpM due to its binding properties. The developed sensor showed a very low detection limit of 1.23 nM with linear ranges of 10-100 nM and 1-100 μM and its practical applicability was examined using artificial samples of blood serum and cerebrospinal fluid, validating its potential application in real-life scenarios.
Collapse
Affiliation(s)
- K Niyas
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India.
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Bartholomew Richard
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Menon Ankitha
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India.
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| |
Collapse
|
3
|
Khan K, Ikram M, Haider A, Ul-Hamid A, Ali G, Goumri-Said S, Kanoun MB, Yousaf SA, El-Rayyes A, Jeridi M. Experimental and computational approach of zirconium and chitosan doped NiCo 2O 4 nanorods served as dye degrader and bactericidal action. Int J Biol Macromol 2024; 272:132810. [PMID: 38825288 DOI: 10.1016/j.ijbiomac.2024.132810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Different concentrations of zirconium with a fixed quantity (4 wt%) of chitosan (CS) doped nickel cobaltite (NiCo2O4) nanorods were synthesized using a co-precipitation approach. This cutting-edge research explores the cooperative effect of Zr-doped CS-NiCo2O4 to degrade the Eriochrome black T (EBT) and investigates potent antibacterial activity against Staphylococcus aureus (S. aureus). Advanced characterization techniques were conducted to analyze structural textures, morphological analysis, and optical characteristics of synthesized materials. XRD pattern unveiled the spinal cubic structure of NiCo2O4, incorporating Zr and CS peak shifted to a lower 2θ value. UV-Vis spectroscopy revealed the absorption range increased with CS and the same trend was observed upon Zr, showing a decrease in bandgap energy (Eg) from 2.55 to 2.4 eV. The optimal photocatalytic efficacy of doped NiCo2O4 within the basic medium was around 96.26 %, and bactericidal efficacy was examined against S. aureus, revealing a remarkable inhibition zone (5.95 mm).
Collapse
Affiliation(s)
- Khadija Khan
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan.
| | - Ali Haider
- Department of Clinical Medicine, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000 Multan, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Souraya Goumri-Said
- Physics Department, College of Science and General Studies, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Mohammed Benali Kanoun
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia.
| | - S Amber Yousaf
- Department of Physics, University of Central Punjab, Lahore 54000, Punjab, Pakistan
| | - Ali El-Rayyes
- Chemistry Department, College of Science, Northern Border University, Arar 1321, Saudi Arabia
| | - Mouna Jeridi
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| |
Collapse
|
4
|
Sun Y, Jiang D, Wang J, Zhang A, Wang C, Zong H, Xu J, Liu J. Construction of Binder-Free, Self-Supported, Hetero-Core-Shell Honeycomb Structured CuCo 2 O 4 @Ni 0.5 Co 0.5 (OH) 2 with Abundant Mesopores and High Conductivity for High-Performance Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305288. [PMID: 37775328 DOI: 10.1002/smll.202305288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/29/2023] [Indexed: 10/01/2023]
Abstract
Clever and rational design of structural hierarchy, along with precise component adjustment, holds profound significance for the construction of high-performance supercapacitor electrode materials. In this study, a binder-free self-supported CCO@N0.5 C0.5 OH/NF cathode material is constructed with hierarchical hetero-core-shell honeycomb nanostructure by first growing CuCo2 O4 (CCO) nanopin arrays uniformly on highly conductive nickel foam (NF) substrate, and then anchoring Ni0.5 Co0.5 (OH)2 (N0.5 C0.5 OH) bimetallic hydroxide nanosheet arrays on the CCO nanopin arrays by adjusting the molar ratio of Ni(OH)2 and Co(OH)2 . The constructed CCO@N0.5 C0.5 OH/NF electrode material showcases a wealth of multivalent metal ions and mesopores, along with good electrical conductivity, excellent electrochemical reaction rates, and robust long-term performance (capacitance retention rate of 87.2%). The CCO@N0.5 C0.5 OH/NF electrode, benefiting from the hierarchical structure of the material and the exceptional synergy between multiple components, demonstrates an excellent specific capacitance (2553.6 F g-1 at 1 A g-1 ). Furthermore, the assembled asymmetric CCO@N0.5 C0.5 OH/NF//AC/NF supercapacitor demonstrates a high energy density (70.1 Wh kg-1 at 850 W kg-1 ), and maintains robust capacitance cycling stability performance (83.7%) after undergoing 10 000 successive charges and discharges. It is noteworthy that the assembled supercapacitor exhibits an operating voltage (1.7 V) that is well above the theoretical value (1.5 V).
Collapse
Affiliation(s)
- Yuesheng Sun
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Degang Jiang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - Jianhua Wang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Aitang Zhang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Chunxiao Wang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Hanwen Zong
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Jiangtao Xu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| |
Collapse
|
5
|
Sharma S, Chand P. Supercapacitor and Electrochemical Techniques: A Brief Review. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
|