1
|
Moszczyńska J, Roszek K, Wiśniewski M. Non-Thermal Plasma Application in Medicine-Focus on Reactive Species Involvement. Int J Mol Sci 2023; 24:12667. [PMID: 37628848 PMCID: PMC10454508 DOI: 10.3390/ijms241612667] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Non-thermal plasma (NTP) application in medicine is a dynamically developing interdisciplinary field. Despite the fact that basics of the plasma phenomenon have been known since the 19th century, growing scientific attention has been paid in recent years to the use of plasma in medicine. Three most important plasma-based effects are pivotal for medical applications: (i) inactivation of a broad spectrum of microorganisms, (ii) stimulation of cell proliferation and angiogenesis with lower plasma treatment intensity, and (iii) inactivation of cells by initialization of cell death with higher plasma intensity. In this review, we explain the underlying chemical processes and reactive species involvement during NTP in human (or animal) tissues, as well as in bacteria inactivation, which leads to sterilization and indirectly supports wound healing. In addition, plasma-mediated modifications of medical surfaces, such as surgical instruments or implants, are described. This review focuses on the existing knowledge on NTP-based in vitro and in vivo studies and highlights potential opportunities for the development of novel therapeutic methods. A full understanding of the NTP mechanisms of action is urgently needed for the further development of modern plasma-based medicine.
Collapse
Affiliation(s)
- Julia Moszczyńska
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Marek Wiśniewski
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| |
Collapse
|
2
|
Protective effects of low-temperature plasma on cisplatin-induced nephrotoxicity. Life Sci 2022; 289:120230. [PMID: 34919900 DOI: 10.1016/j.lfs.2021.120230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 01/25/2023]
Abstract
The application of atmospheric pressure low-temperature plasma (LTP) in medical treatment has received extensive attention owing to its redox regulatory and anti-inflammatory properties. Nephrotoxicity due to oxidative stress and inflammation is the main adverse effect of cisplatin. In the present study, rats with cisplatin-induced nephrotoxicity were treated with LTP to investigate its potential protective effect. The results showed that LTP treatment has multiple protective effects on cisplatin-induced nephrotoxicity. It significantly improved clinical indicators such as survival rate, water intake, food intake, body weight, and mobility, as well as physiological indexes such as reduced renal index and levels of serum urea, creatinine, and total bilirubin; pathological indicators such as reduced tubular injury, inflammatory infiltration, tubulointerstitial fibrosis, and apoptosis; cell survival indicators such as decreased protein levels of Caspase-3 and Bax and increased Bcl-2; anti-oxidation status such as reduced malondialdehyde content and increased activities of catalase, superoxide dismutase, and glutathione peroxidase; and reduced inflammatory factors such as TNF-α in kidney tissues. Specially, LTP treatment did not influence the anticancer effect of cisplatin as observed in the solid tumor mouse model established by subcutaneously inoculating H22 cells. Moreover, LTP did not influence the physiological and pathological indicators of normal rats, suggesting its biological safety. In conclusion, LTP can protect against cisplatin-induced nephrotoxicity through its anti-oxidation, anti-inflammation, and anti-apoptosis effects, without influencing the anticancer effect of cisplatin.
Collapse
|
3
|
Shakouri R, Khani MR, Samsavar S, Jezeh MA, Abdollahimajd F, Hosseini SI, Dilmaghanian A, Ghasemi E, Alihoseini MR, Shokri B. In vivo study of the effects of a portable cold plasma device and vitamin C for skin rejuvenation. Sci Rep 2021; 11:21915. [PMID: 34753995 PMCID: PMC8578492 DOI: 10.1038/s41598-021-01341-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023] Open
Abstract
Nowadays, cold atmospheric plasma shows interesting results in dermatology. In the present study, a new portable cold plasma was designed for plasma skin rejuvenation (PSR) purposes. This device is safe and easy to use at beauty salons and homes. The effects of this device were investigated on the rat skins. Also, as a new method to improve PSR results, vitamin C ointment was combined with plasma. In this study, there were four groups of 5 Wistar rats. The first group received vitamin C ointment, the second received 5 min of high-voltage plasma, and the third and the fourth groups received 5 min of high- and low-voltage plasma and vitamin C ointment. This process was done every other day (3 sessions per week) for 6 weeks. To evaluate the thermal effect of plasma, the skin temperature was monitored. Also, the presence of reactive species was demonstrated by the use of optical spectroscopy. In addition, mechanical assays were performed to assess the effect of plasma and vitamin C on the tissue's mechanical strength. The mechanical assays showed a positive impact of plasma on the treated tissue compared to the control group. Also, changes in the collagen level and thickness of the epidermal layer were examined in histological studies. The results indicated an increase in collagen levels after using plasma alone and an accelerated skin reaction after using vitamin C combined with plasma therapy. The epidermal layer's thickness increased after applying high-voltage plasma, which indicates an increase in skin elasticity. This study demonstrates the positive effect of using the portable plasma device with vitamin C ointment on effective parameters in skin rejuvenation.
Collapse
Affiliation(s)
- Reza Shakouri
- Laser and Plasma Research Institute, Shahid Beheshti University, G.C., P.O. Box 19839-6941, Tehran, Iran
- Physics Department of Shahid, Beheshti University, G.C., P.O. Box 19839-6941, Tehran, Iran
| | - Mohammad Reza Khani
- Laser and Plasma Research Institute, Shahid Beheshti University, G.C., P.O. Box 19839-6941, Tehran, Iran.
| | - Shirin Samsavar
- Laser and Plasma Research Institute, Shahid Beheshti University, G.C., P.O. Box 19839-6941, Tehran, Iran
- Physics Department of Shahid, Beheshti University, G.C., P.O. Box 19839-6941, Tehran, Iran
| | - Mahya Aminrayai Jezeh
- Laser and Plasma Research Institute, Shahid Beheshti University, G.C., P.O. Box 19839-6941, Tehran, Iran
| | - Fahimeh Abdollahimajd
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Iman Hosseini
- Faculty of Physics, Shahrood University of Technology, Shahrood, 3619995161, Iran
| | - Aydin Dilmaghanian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Erfan Ghasemi
- Laser and Plasma Research Institute, Shahid Beheshti University, G.C., P.O. Box 19839-6941, Tehran, Iran
| | - Mohammad Reza Alihoseini
- Laser and Plasma Research Institute, Shahid Beheshti University, G.C., P.O. Box 19839-6941, Tehran, Iran
| | - Babak Shokri
- Laser and Plasma Research Institute, Shahid Beheshti University, G.C., P.O. Box 19839-6941, Tehran, Iran
- Physics Department of Shahid, Beheshti University, G.C., P.O. Box 19839-6941, Tehran, Iran
| |
Collapse
|
4
|
Pinto RV, Carvalho S, Antunes F, Pires J, Pinto ML. Emerging Nitric Oxide and Hydrogen Sulfide Releasing Carriers for Skin Wound Healing Therapy. ChemMedChem 2021; 17:e202100429. [PMID: 34714595 DOI: 10.1002/cmdc.202100429] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/26/2021] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2 S) have been recognized as important signalling molecules involved in multiple physiological functions, including wound healing. Their exogenous delivery has been established as a new route for therapies, being the topical application the nearest to commercialization. Nevertheless, the gaseous nature of these therapeutic agents and their toxicity at high levels imply additional challenges in the design of effective delivery systems, including the tailoring of their morphology and surface chemistry to get controllable release kinetics and suitable lifetimes. This review highlights the increasing interest in the use of these gases in wound healing applications by presenting the various potential strategies in which NO and/or H2 S are the main therapeutic agents, with focus on their conceptual design, release behaviour and therapeutic performance. These strategies comprise the application of several types of nanoparticles, polymers, porous materials, and composites as new releasing carriers of NO and H2 S, with characteristics that will facilitate the application of these molecules in the clinical practice.
Collapse
Affiliation(s)
- Rosana V Pinto
- CERENA-Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal.,CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - Sílvia Carvalho
- CERENA-Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal.,CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - Fernando Antunes
- CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - João Pires
- CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - Moisés L Pinto
- CERENA-Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| |
Collapse
|
5
|
Shekhter AB, Pekshev AV, Vagapov AB, Butenko AV, Fayzullin AL, Rudenko TG, Sharapov NA, Serejnikova NB, Vasilets VN. Dose-dependent effect of plasma-chemical NO-containing gas flow on wound healing. An experimental study. CLINICAL PLASMA MEDICINE 2020. [DOI: 10.1016/j.cpme.2020.100101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Review of clinical applications of nitric oxide-containing air-plasma gas flow generated by Plason device. CLINICAL PLASMA MEDICINE 2020. [DOI: 10.1016/j.cpme.2020.100112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Shekhter AB, Pekshev AV, Vagapov AB, Telpukhov VI, Panyushkin PV, Rudenko TG, Fayzullin AL, Sharapov NA, Vanin AF. Physicochemical parameters of NO-containing gas flow affect wound healing therapy. An experimental study. Eur J Pharm Sci 2019; 128:193-201. [DOI: 10.1016/j.ejps.2018.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022]
|
8
|
Jablonowski H, Schmidt-Bleker A, Weltmann KD, von Woedtke T, Wende K. Non-touching plasma-liquid interaction - where is aqueous nitric oxide generated? Phys Chem Chem Phys 2018; 20:25387-25398. [PMID: 30264836 DOI: 10.1039/c8cp02412j] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nitric oxide is a relatively stable free radical and an important signal molecule in plants, animals, and humans with high relevance for biological processes involving inflammatory processes, e.g. wound healing or cancer. The molecule can be detected in the gas phase of non-thermal plasma jets making it a valuable tool for clinical intervention, but transport efficiency from the gas phase into the liquid phase or tissue remains to be clarified. To elucidate this fact, the nitric oxide concentration in buffered solutions is determined using electron paramagnetic resonance spectroscopy. The origin of the nitric oxide in the liquid could be excluded, therefore, potential precursors such as hydroxyl radicals, superoxide anions, atomic hydrogen and stable species (nitrite, nitrate and hydrogen peroxide) were detected and the potential formation pathway as well as ways of enhancing the production of nitric oxide by alteration of the feed gas and the surrounding gas composition during plasma treatment of the liquid have been pointed out.
Collapse
Affiliation(s)
- Helena Jablonowski
- ZIK Plasmatis at Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | | | | | | | | |
Collapse
|
9
|
Jablonowski H, Santos Sousa J, Weltmann KD, Wende K, Reuter S. Quantification of the ozone and singlet delta oxygen produced in gas and liquid phases by a non-thermal atmospheric plasma with relevance for medical treatment. Sci Rep 2018; 8:12195. [PMID: 30111826 PMCID: PMC6093894 DOI: 10.1038/s41598-018-30483-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022] Open
Abstract
In the field of plasma medicine, the identification of relevant reactive species in the liquid phase is highly important. To design the plasma generated species composition for a targeted therapeutic application, the point of origin of those species needs to be known. The dominant reactive oxygen species generated by the plasma used in this study are atomic oxygen, ozone, and singlet delta oxygen. The species density changes with the distance to the active plasma zone, and, hence, the oxidizing potential of this species cocktail can be tuned by altering the treatment distance. In both phases (gas and liquid), independent techniques have been used to determine the species concentration as a function of the distance. The surrounding gas composition and ambient conditions were controlled between pure nitrogen and air-like by using a curtain gas device. In the gas phase, in contrast to the ozone density, the singlet delta oxygen density showed to be more sensitive to the distance. Additionally, by changing the surrounding gas, admixing or not molecular oxygen, the dynamics of ozone and singlet delta oxygen behave differently. Through an analysis of the reactive species development for the varied experimental parameters, the importance of several reaction pathways for the proceeding reactions was evaluated and some were eventually excluded.
Collapse
Affiliation(s)
- Helena Jablonowski
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald e.V.), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - Joao Santos Sousa
- LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald e.V.), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis at Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald e.V.), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Stephan Reuter
- Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald e.V.), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| |
Collapse
|
10
|
Pekshev AV, Shekhter AB, Vagapov AB, Sharapov NA, Vanin AF. Study of plasma-chemical NO-containing gas flow for treatment of wounds and inflammatory processes. Nitric Oxide 2017; 73:74-80. [PMID: 28602888 DOI: 10.1016/j.niox.2017.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/25/2017] [Accepted: 06/04/2017] [Indexed: 10/19/2022]
Abstract
This work is aimed at exhaustive and detailed study of chemical, physical and physico-chemical characteristics of NO-containing gas flow (NO-CGF) generated by a plasma-chemical generator of Plason device, which has been used in medical practice for more than 15 years for effectively healing wound and inflammatory conditions with exogenous nitric oxide (NO-therapy). Data was obtained on spatial structure of the gas flow, and values of its local parameters in axial and radial directions, such as nitric oxide content, velocity, temperature and mass flow density of nitric oxide, providing altogether the effectiveness of treatment by the exogenous NO-therapy method, were determined experimentally and by computations. It was demonstrated that plasma-chemical synthesis of NO from atmospheric air in a low direct current (DC) arc provides a high mass flow of nitric oxide at the level of 1.6-1.8 mg/s, while in the area of impact of NO-CGF on the biological tissue, on its axis, NO content is 400-600 ppm, flow velocity about 5 m/s, nitric oxide mass flow density 0.25-0.40 mg/(s·cm2), temperature 40-60 °C. Tendencies were determined for designing new devices for further experimental biological and medical research in the field of NO-therapy: lowering the temperature of NO-CGF to ambient temperature will enable variation, in experiments, of the affecting flow parameters in a wide range up to their maximum values: NO content up to 2000 ppm, velocity up to 20 m/s, nitric oxide mass flow density up to 2.5 mg/(s·cm2).
Collapse
Affiliation(s)
| | | | | | | | - Anatoly F Vanin
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; N.N. Semenov Institute of Chemical Physics, Moscow, Russia.
| |
Collapse
|