1
|
Sadovskaya A, Petinati N, Shipounova I, Drize N, Smirnov I, Pobeguts O, Arapidi G, Lagarkova M, Karaseva L, Pokrovskaya O, Kuzmina L, Vasilieva A, Aleshina O, Parovichnikova E. Damage of the Bone Marrow Stromal Precursors in Patients with Acute Leukemia at the Onset of the Disease and During Treatment. Int J Mol Sci 2024; 25:13285. [PMID: 39769050 PMCID: PMC11677965 DOI: 10.3390/ijms252413285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
In patients with acute leukemia (AL), malignant cells and therapy modify the properties of multipotent mesenchymal stromal cells (MSCs) and their descendants, reducing their ability to maintain normal hematopoiesis. The aim of this work was to elucidate the alterations in MSCs at the onset and after therapy in patients with AL. The study included MSCs obtained from the bone marrow of 78 AL patients (42 AML and 36 ALL) and healthy donors. MSC growth characteristics, gene expression pattern, proteome and secretome were studied using appropriate methods. The concentration of MSCs in the bone marrow, proliferative potential, the expression of several genes, proteomes and secretomes were altered in AL-MSCs. Stromal progenitors had been affected differently in ALL and AML patients. In remission, MSC functions remain impaired despite the absence of tumor cells and the maintenance of benign hematopoietic cells. AL causes crucial and, to a large extent, irreversible changes in bone marrow MSCs.
Collapse
Affiliation(s)
- Aleksandra Sadovskaya
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
- Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nataliya Petinati
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Irina Shipounova
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Nina Drize
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Igor Smirnov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Olga Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Georgiy Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Maria Lagarkova
- Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Luiza Karaseva
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Olga Pokrovskaya
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Larisa Kuzmina
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Anastasia Vasilieva
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Olga Aleshina
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Elena Parovichnikova
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| |
Collapse
|
2
|
Kumar B, Singh A, Basar R, Uprety N, Li Y, Fan H, Cortes AKN, Kaplan M, Acharya S, Shaim H, Xu AC, Wu M, Fang D, Banerjee PP, Garcia LM, Tiberti S, Lin P, Rafei H, Ensley E, Munir MN, Moore M, Shanley M, Mendt M, Kerbauy LN, Liu B, Biederstädt A, Gokdemir E, Ghosh S, Kundu K, Reyes-Silva F, Jiang XR, Wan X, Gilbert AL, Dede M, Mohanty V, Dou J, Zhang P, Liu E, Muniz-Feliciano L, Deyter GM, Jain AK, Rodriguez-Sevilla JJ, Colla S, Garcia-Manero G, Shpall EJ, Chen K, Abbas HA, Rai K, Rezvani K, Daher M. BATF is a major driver of NK cell epigenetic reprogramming and dysfunction in AML. Sci Transl Med 2024; 16:eadp0004. [PMID: 39259809 PMCID: PMC11967735 DOI: 10.1126/scitranslmed.adp0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/10/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Myelodysplastic syndrome and acute myeloid leukemia (AML) belong to a continuous disease spectrum of myeloid malignancies with poor prognosis in the relapsed/refractory setting necessitating novel therapies. Natural killer (NK) cells from patients with myeloid malignancies display global dysfunction with impaired killing capacity, altered metabolism, and an exhausted phenotype at the single-cell transcriptomic and proteomic levels. In this study, we identified that this dysfunction was mediated through a cross-talk between NK cells and myeloid blasts necessitating cell-cell contact. NK cell dysfunction could be prevented by targeting the αvβ-integrin/TGF-β/SMAD pathway but, once established, was persistent because of profound epigenetic reprogramming. We identified BATF as a core transcription factor and the main mediator of this NK cell dysfunction in AML. Mechanistically, we found that BATF was directly regulated and induced by SMAD2/3 and, in turn, bound to key genes related to NK cell exhaustion, such as HAVCR2, LAG3, TIGIT, and CTLA4. BATF deletion enhanced NK cell function against AML in vitro and in vivo. Collectively, our findings reveal a previously unidentified mechanism of NK immune evasion in AML manifested by epigenetic rewiring and inactivation of NK cells by myeloid blasts. This work highlights the importance of using healthy allogeneic NK cells as an adoptive cell therapy to treat patients with myeloid malignancies combined with strategies aimed at preventing the dysfunction by targeting the TGF-β pathway or BATF.
Collapse
Affiliation(s)
- Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Anand Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Huihui Fan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA 77030
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Anna C Xu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Manrong Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Dexing Fang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Pinaki P. Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Silvia Tiberti
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Maliha Nuzhat Munir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Madison Moore
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Lucila N. Kerbauy
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
- Department of Stem Cell Transplantation and Hemotherapy/Cellular Therapy, Hospital Israelita Albert Einstein, Sao Paulo, 05652-900, Brazil
| | - Bin Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Elif Gokdemir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Susmita Ghosh
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Kiran Kundu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Francia Reyes-Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Xin Ru Jiang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Xinhai Wan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - April L. Gilbert
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Patrick Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Gary M. Deyter
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Abhinav K. Jain
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | | | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Hussein A. Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
- MD Anderson Cancer Center Epigenetics Therapy Initiative, Houston, TX, USA 77030
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| |
Collapse
|
3
|
Guo C, Lv X, Zhang Q, Yi L, Ren Y, Li Z, Yan J, Zheng S, Sun M, Liu S. CRKL but not CRKII contributes to hemin-induced erythroid differentiation of CML. J Cell Mol Med 2024; 28:e18308. [PMID: 38683131 PMCID: PMC11057422 DOI: 10.1111/jcmm.18308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Destruction of erythropoiesis process leads to various diseases, including thrombocytopenia, anaemia, and leukaemia. miR-429-CT10 regulation of kinase-like (CRKL) axis involved in development, progression and metastasis of cancers. However, the exact role of miR-429-CRKL axis in leukaemic cell differentiation are still unknown. The current work aimed to uncover the effect of miR-429-CRKL axis on erythropoiesis. In the present study, CRKL upregulation was negatively correlated with miR-429 downregulation in both chronic myeloid leukaemia (CML) patient and CR patient samples. Moreover, CRKL expression level was significantly decreased while miR-429 expression level was increased during the erythroid differentiation of K562 cells following hemin treatment. Functional investigations revealed that overexpression and knockdown of CRKL was remarkably effective in suppressing and promoting hemin-induced erythroid differentiation of K562 cells, whereas, miR-429 exhibited opposite effects to CRKL. Mechanistically, miR-429 regulates erythroid differentiation of K562 cells by downregulating CRKL via selectively targeting CRKL-3'-untranslated region (UTR) through Raf/MEK/ERK pathway. Conversely, CRKII had no effect on erythroid differentiation of K562 cells. Taken together, our data demonstrated that CRKL (but not CRKII) and miR-429 contribute to development, progression and erythropoiesis of CML, miR-429-CRKL axis regulates erythropoiesis of K562 cells via Raf/MEK/ERK pathway, providing novel insights into effective diagnosis and therapy for CML patients.
Collapse
MESH Headings
- Humans
- 3' Untranslated Regions
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Cell Differentiation/drug effects
- Erythroid Cells/metabolism
- Erythroid Cells/drug effects
- Erythroid Cells/pathology
- Erythroid Cells/cytology
- Erythropoiesis/genetics
- Erythropoiesis/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Hemin/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MAP Kinase Signaling System/drug effects
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Proto-Oncogene Proteins c-crk/metabolism
- Proto-Oncogene Proteins c-crk/genetics
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Xinxin Lv
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Qiuling Zhang
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Lina Yi
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Yingying Ren
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Zhaopeng Li
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Jinsong Yan
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical UniversityInstitute of Stem Cell Transplantation of Dalian Medical UniversityDalianLiaoningChina
| | - Shanliang Zheng
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Ming‐Zhong Sun
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| |
Collapse
|
4
|
Bian W, Huang Q, Zhang J, Li J, Song X, Cui S, Zheng Q, Niu J. Intravoxel incoherent motion diffusion-weighted MRI for the evaluation of early spleen involvement in acute leukemia. Quant Imaging Med Surg 2024; 14:98-110. [PMID: 38223126 PMCID: PMC10784019 DOI: 10.21037/qims-23-856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/30/2023] [Indexed: 01/16/2024]
Abstract
Background The spleen is a frequent organ of leukemia metastasis. This study aimed to investigate the value of intravoxel incoherent motion (IVIM) diffusion-weighted magnetic resonance imaging (MRI) for assessing pathologic changes in the spleen and identifying early spleen involvement in patients with acute leukemia (AL). Methods Patients with newly diagnosed AL and healthy controls were recruited between June 2020 and November 2022. All participants underwent abdominal IVIM diffusion-weighted imaging (DWI) at our hospital. IVIM parameters [pure diffusion coefficient (D); pseudo-diffusion coefficient (D*); and pseudo-perfusion fraction (f)] of the spleen were calculated by the segmented fitting method, and perfusion-diffusion ratio (PDR) was further calculated from the values of D, D* and f. Spleen volumes (SVs) were obtained by manually segmenting the spleen layer by layer. Clinical biomarkers of AL patients were collected. Patients were divided into splenomegaly group and normal SV group according to the individualized reference intervals for SV. IVIM parameters were compared among the control group, AL with normal SV group, and AL with splenomegaly group using one-way analysis of variance, followed by pairwise post hoc comparisons. The correlations of IVIM parameters with clinical biomarkers were analyzed in AL patients. The diagnostic performances of IVIM parameters and their combinations for differentiating among the three groups were compared. Results Seventy-nine AL patients (AL with splenomegaly: n=54; AL with normal SV: n=25) and 55 healthy controls were evaluated. IVIM parameters were significantly different among the three groups (P<0.001 for D, D* and f; P=0.001 for PDR). D and PDR showed significant differences between the control and AL with normal SV groups in pairwise comparisons (P<0.001, and P=0.031, respectively). D was correlated with white blood cell (WBC) counts (r=-0.424; 95% CI: -0.570, -0.211; P<0.001), lactate dehydrogenase (LDH) (r=-0.285; 95% CI: -0.486, -0.011; P=0.011), and bone marrow blasts (r=-0.283; 95% CI: -0.476, -0.067; P=0.012). D* (r=-0.276; 95% CI: -0.470, -0.025; P=0.014), f (r=0.514; 95% CI: 0.342, 0.664; P<0.001) and PDR (r=0.343; 95% CI: 0.208, 0.549; P=0.002) were correlated with LDH. The combination of IVIM parameters (AUC: 0.830; 95% CI: 0.729, 0.905) demonstrated better diagnostic efficacy than the single D* (AUC: 0.721; 95% CI: 0.608, 0.816; Delong test: Z=2.012, P=0.044) and f (AUC: 0.647; 95% CI: 0.532, 0.752; Delong test: Z=2.829, P=0.005), but was not significantly different from the single D (AUC: 0.756; 95% CI: 0.647, 0.846; Delong test: Z=1.676, P=0.094) in differentiating the splenomegaly group and normal SV group. Conclusions IVIM diffusion-weighted MRI could be a potential alternative for assessing pathologic changes in the spleen from cellularity and angiogenesis, and D and PDR may be viable indicators to identify early spleen involvement in patients with AL.
Collapse
Affiliation(s)
- Wenjin Bian
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
- Department of Radiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qianqian Huang
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Jianling Zhang
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Jianting Li
- Department of Radiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoli Song
- Department of Radiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Cui
- Department of Radiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Zheng
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
- Department of Radiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinliang Niu
- Department of Radiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Tsourveloudis I, Georgiadi EC, Vatalis G, Kotsi P. Case report of a patient with VEXAS syndrome. Medicine (Baltimore) 2023; 102:e36738. [PMID: 38206689 PMCID: PMC10754568 DOI: 10.1097/md.0000000000036738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
RATIONALE Hematological malignancies have always been a challenge for scientists because there is a constant need to better define these entities. Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders characterized by ineffective hematopoiesis. Cytogenetics and molecular findings are a prerequisite for these syndromes as they confirm the clonal nature of the disease. However, MDS is often linked to autoimmunity and inflammation as part of its pathogenesis. Recently, VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) linked these two in a single mutation, suggesting that the heterogeneity among hematological malignancies often demands a more personalized medicine by tailoring medical treatment to the individual characteristics of each patient. PATIENT CONCERNS We present a case of VEXAS syndrome regarding a 63-year-old male patient who initially presented with episodes of low fever, polyarthritis of the knees and ankles, polymyalgia, and fatigue. His laboratory examinations revealed increased levels of serum inflammatory markers. DIAGNOSES Diagnosis was based on high clinical suspicion, laboratory findings, and vacuolization of the erythroid and myeloid precursors in the bone marrow evaluation. Mutational status of ubiquitin-like modifier activating enzyme 1 gene was positive with a 68.8% allelomorph frequency (rs782416867). INTERVENTIONS Therapy was based on controlling inflammation with the use of glucocorticoids and treating MDS-related anemia with the use of erythropoietin. OUTCOMES Currently, the patient visits our department regularly. He is still receiving the aforementioned treatment. He did not mention any new incidents for the time being. LESSONS VEXAS syndrome as a newly identified entity might be often underestimated since its clinical presentation is notably diverse.
Collapse
Affiliation(s)
| | - Eleni C. Georgiadi
- Transfusion Department, University General Hospital of Larissa, Larissa, Greece
| | | | - Paraskevi Kotsi
- Transfusion Department, University General Hospital of Larissa, Larissa, Greece
| |
Collapse
|
6
|
Silva FS, Barros-Lima A, Souza-Barros M, Crespo-Neto JA, Santos VGR, Pereira DS, Alves-Hanna FS, Magalhães-Gama F, Faria JAQA, Costa AG. A dual-role for IL-10: From leukemogenesis to the tumor progression in acute lymphoblastic leukemia. Cytokine 2023; 171:156371. [PMID: 37725872 DOI: 10.1016/j.cyto.2023.156371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer in the world, and accounts for 25% of all childhood cancers among children under 15 years of age. Longitudinal studies have shown that children with ALL are born with a deregulated immune response that, together with postnatal environmental exposures, favor the onset of the disease. In this context, IL-10, a key cytokine in the regulation of the immune response, presents itself as a paradoxical mediator, initially influencing the development of ALL through the regulation of inflammatory processes and later on the progression of malignancy, with the increase of this molecule in the leukemia microenvironment. According to the literature, this cytokine plays a critical role in the natural history of the disease and plays an important role in two different though complex scenarios. Thus, in this review, we explore the dual role of IL-10 in ALL, and describe its biological characteristics, immunological mechanisms and genetics, as well as its impact on the leukemia microenvironment and its clinical implications.
Collapse
Affiliation(s)
- Flavio Souza Silva
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Amanda Barros-Lima
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Mateus Souza-Barros
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Juniel Assis Crespo-Neto
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | | | - Daniele Sá Pereira
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Fabíola Silva Alves-Hanna
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Jerusa Araújo Quintão Arantes Faria
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil.
| |
Collapse
|
7
|
Bian W, Zhang J, Huang Q, Niu W, Li J, Song X, Cui S, Zheng Q, Niu J, Zhou XJ. Quantitative tumor burden imaging parameters of the spleen at MRI for predicting treatment response in patients with acute leukemia. Heliyon 2023; 9:e20348. [PMID: 37810872 PMCID: PMC10550618 DOI: 10.1016/j.heliyon.2023.e20348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Objectives To study the value of standardized volume and intravoxel incoherent motion (IVIM) parameters of the spleen based on tumor burden for predicting treatment response in newly diagnosed acute leukemia (AL). Methods Patients with newly diagnosed AL were recruited and underwent abdominal IVIM diffusion-weighted imaging within one week before the first induction chemotherapy. Quantitative parameters of magnetic resonance imaging (MRI) included the standardized volume (representing volumetric tumor burden) and IVIM parameters (standard apparent diffusion coefficient [sADC]; pure diffusion coefficient [D]; pseudo-diffusion coefficient [D∗]; and pseudo-perfusion fraction [f], representing functional tumor burden) of the spleen. Clinical biomarkers of tumor burden were collected. Patients were divided into complete remission (CR) and non-CR groups according to the treatment response after the first standardized induction chemotherapy, and the MRI and clinical parameters were compared between the two groups. The correlations of MRI parameters with clinical biomarkers were analyzed. Multivariate logistic regression was performed to determine the independent predictors for treatment response. Receiver operating characteristic curves were used to analyze the predicted performance. Results 76 AL patients (CR: n = 43; non-CR: n = 33) were evaluated. Standardized spleen volume, sADC, D, f, white blood cell counts, and lactate dehydrogenase were significantly different between CR and non-CR groups (all p < 0.05). Standardized spleen volume, sADC, and D were correlated with white blood cell and lactate dehydrogenase, and f was correlated with lactate dehydrogenase (all p < 0.05). Standardized spleen volume (hazard ratio = 4.055, p = 0.042), D (hazard ratio = 0.991, p = 0.027), and f (hazard ratio = 1.142, p = 0.008) were independent predictors for treatment response, and the combination of standardized spleen volume, D, and f showed more favorable discrimination (area under the curve = 0.856) than individual predictors. Conclusion Standardized volume, D, and f of the spleen could be used to predict treatment response in newly diagnosed AL, and the combination of morphological and functional parameters would further improve the predicted performance. IVIM parameters of the spleen may be viable indicators for evaluating functional tumor burden in AL.
Collapse
Affiliation(s)
- Wenjin Bian
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianling Zhang
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qianqian Huang
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Weiran Niu
- Department of Mental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianting Li
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoli Song
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Sha Cui
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qian Zheng
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jinliang Niu
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaohong Joe Zhou
- Center for MR Research and Departments of Radiology, Neurosurgery, And Biomedical Engineering, University of Illinois at Chicago, Chicago, 60612, Illinois, USA
| |
Collapse
|
8
|
Rzepiel A, Horváth A, Kutszegi N, Gézsi A, Sági JC, Almási L, Egyed B, Lőrincz P, Visnovitz T, Kovács GT, Szalai C, Semsei ÁF, Erdélyi DJ. MiR-128-3p as blood based liquid biopsy biomarker in childhood acute lymphoblastic leukemia. Mol Cell Probes 2023; 67:101893. [PMID: 36640912 DOI: 10.1016/j.mcp.2023.101893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Minimal residual disease (MRD) is one of the most valuable independent prognostic factors in acute lymphoblastic leukemia (ALL). Bone marrow (BM) aspiration, however, is an invasive process. Previous studies have shown that microRNAs (miR) and extracellular vesicle (EV)-related miRs show different expression profiles at the presence of malignant cells compared to healthy controls. In our previous project, we have reported that two miRs previously described to be overexpressed in blasts were significantly decreased over the first week of the therapy of patients with ALL in the platelet free plasma fraction (PFP) of peripheral blood samples (PB). The aim of the current study was to assess the relation between day 15 flow cytometry (FC) MRD and expression of miR-128-3p and miR-222-3p miRs in exosome-enriched fraction (EEF) of PFP to evaluate whether their expression in EEF correlates with day 15 FC MRD more precisely. METHODS PB was collected from 13 patients diagnosed with pediatric pre-B ALL at 4 time points. Expression of miR-128-3p and miR-222-3p was measured by qPCR in PFP and EEF. RESULTS Positive correlation was found between changes of miR-128-3p expression in EEF or PFP by day 8 of chemotherapy and day 15 FC MRD (rEEF = 0.99, pEEF = 1.13E-9 and rPFP = 0.99, pPFP = 4.75E-9, respectively). Furthermore, the decrease of miR-128-3p in EEF by day 15 of treatment also showed a positive correlation with day 15 FC MRD (rEEF = 0.96; pEEF = 4.89E-5). CONCLUSION Our results show that circulating miRs are potential biomarkers of ALL MRD, asmiR-128-3p level both in PFP and EEF predicts day 15 FC MRD. In addition, the assessment of the EEF gave a more promising result.
Collapse
Affiliation(s)
- Andrea Rzepiel
- Dept. of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Anna Horváth
- Dept. of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; HCEMM-SE Molecular Oncohematology Research Group, 1st Dept. of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Nóra Kutszegi
- Dept. of Paediatrics, Semmelweis University, Budapest, Hungary; Dept. of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - András Gézsi
- Dept. of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Judit C Sági
- Dept. of Paediatrics, Semmelweis University, Budapest, Hungary; Dept. of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Laura Almási
- Dept. of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- Dept. of Paediatrics, Semmelweis University, Budapest, Hungary; Dept. of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; HCEMM-SE Molecular Oncohematology Research Group, 1st Dept. of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Péter Lőrincz
- Dept. of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tamás Visnovitz
- Dept. of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; Dept. of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gábor T Kovács
- Dept. of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Csaba Szalai
- Dept. of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; Heim Pál Children Hospital, Budapest, Hungary
| | - Ágnes F Semsei
- Dept. of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
9
|
Venglar O, Bago JR, Motais B, Hajek R, Jelinek T. Natural Killer Cells in the Malignant Niche of Multiple Myeloma. Front Immunol 2022; 12:816499. [PMID: 35087536 PMCID: PMC8787055 DOI: 10.3389/fimmu.2021.816499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells represent a subset of CD3- CD7+ CD56+/dim lymphocytes with cytotoxic and suppressor activity against virus-infected cells and cancer cells. The overall potential of NK cells has brought them to the spotlight of targeted immunotherapy in solid and hematological malignancies, including multiple myeloma (MM). Nonetheless, NK cells are subjected to a variety of cancer defense mechanisms, leading to impaired maturation, chemotaxis, target recognition, and killing. This review aims to summarize the available and most current knowledge about cancer-related impairment of NK cell function occurring in MM.
Collapse
Affiliation(s)
- Ondrej Venglar
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Julio Rodriguez Bago
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Benjamin Motais
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Roman Hajek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Tomas Jelinek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| |
Collapse
|
10
|
Tawfik EA, Aldrak NA, Albrahim SH, Alzahrani DA, Alfassam HA, Alkoblan SM, Almalik AM, Chen KS, Abou-Khalil R, Shah K, Zaidan NM. Immunotherapy in hematological malignancies: recent advances and open questions. Immunotherapy 2021; 13:1215-1229. [PMID: 34498496 DOI: 10.2217/imt-2021-0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over recent years, tremendous advances in immunotherapy approaches have been observed, generating significant clinical progress. Cancer immunotherapy has been shown, in different types of blood cancers, to improve the overall survival of patients. Immunotherapy treatment of hematopoietic malignancies is a newly growing field that has been accelerating over the past years. Several US FDA approved drugs and cell-based therapies are being exploited in the late stage of clinical trials. This review attempt to highlight and discuss the numerous innovative immunotherapy approaches of hematopoietic malignancy ranging from nonmyeloablative transplantation, T-cell immunotherapy, natural killer cells and immune agonist to monoclonal antibodies and vaccination. In addition, a brief discussion on the future advances and accomplishments required to counterpart the current immunotherapeutic approaches for hematopoietic malignancies were also highlighted.
Collapse
Affiliation(s)
- Essam A Tawfik
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia.,National Center for Pharmaceutical Technology, Life Science & Environment Research Institute, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Norah A Aldrak
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Shahad H Albrahim
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Dunia A Alzahrani
- National Center for Pharmaceutical Technology, Life Science & Environment Research Institute, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Haya A Alfassam
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Samar M Alkoblan
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Abdulaziz M Almalik
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia.,National Center for Pharmaceutical Technology, Life Science & Environment Research Institute, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Kok-Siong Chen
- BWH Center of Excellence for Biomedicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Center for Stem Cell Therapeutics & Imaging, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Rana Abou-Khalil
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Khalid Shah
- BWH Center of Excellence for Biomedicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Center for Stem Cell Therapeutics & Imaging, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Nada M Zaidan
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| |
Collapse
|
11
|
Petinati NA, Bigildeev AE, Karpenko DS, Sats NV, Kapranov NM, Davydova YO, Fastova EA, Magomedova AU, Kravchenko SK, Arapidi GP, Rusanova MI, Lagarkova MM, Drize NI, Savchenko VG. Humoral Effect of a B-Cell Tumor on the Bone Marrow Multipotent Mesenchymal Stromal Cells. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:207-216. [PMID: 33832419 DOI: 10.1134/s0006297921020097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The properties of bone marrow (BM)-derived multipotent mesenchymal stromal cells (MSCs) are altered in the patients with the diffuse large B cell lymphoma (DLBCL) without BM involvement. It was suggested that plasma from the patients contains soluble factors that affect MSCs. Plasma and BM-derived MSCs from the DLBCL patients at the onset of the disease and one month after the end of treatment were studied. Concentration of the plasma cytokines and gene expression in the MSCs were evaluated by the Bio-Plex Pro Human Cytokine Panel kit to measure 27 analytes and real-time PCR. Plasma and MSCs from the healthy donors were used as controls. Analysis of cytokines in the plasma from healthy donors and patients before and one month after the end of treatment revealed significant differences in the concentration of 14 out of 27 cytokines. Correlations between the levels of secreted cytokines were altered in the plasma from patients indicating that the immune response regulation was disturbed. Cultivation of the MSCs from the healthy donors in the medium supplemented with the plasma from patients led to the changes in the MSC properties, similar to those observed in the MSCs from patients. The BM-derived MSCs were shown to participate in the humoral changes occurring in the DLBCL patients. For the first time, it was shown that the precursors of the stromal microenvironment - multipotent mesenchymal stromal cells - are altered in the patients with DLBCL without bone marrow involvement due to the humoral effect of the tumor and the response of organism to it. Comprehensive analysis of the results shows that, when remission is achieved in the patients with DLBCL, composition of the plasma cytokines normalizes, but does not reach the level observed in the healthy donors. The discovery of a new aspect of the effect of the tumor B-cells on the organism could help to reveal general regularities of the humoral effect of various tumors on the bone marrow stromal cells.
Collapse
Affiliation(s)
- Nataliya A Petinati
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia.
| | - Alexey E Bigildeev
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Dmitriy S Karpenko
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Natalia V Sats
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Nikolay M Kapranov
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Yulia O Davydova
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Ekaterina A Fastova
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Aminat U Magomedova
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Sergey K Kravchenko
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Georgiy P Arapidi
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, 141700, Russia
| | - Maria I Rusanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria M Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Nina I Drize
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Valeriy G Savchenko
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| |
Collapse
|
12
|
Hu X, Wang B, Chen Q, Huang A, Fu W, Liu L, Zhang Y, Tang G, Cheng H, Ni X, Gao L, Chen J, Chen L, Zhang W, Yang J, Cao S, Yu L, Wang J. A clinical prediction model identifies a subgroup with inferior survival within intermediate risk acute myeloid leukemia. J Cancer 2021; 12:4912-4923. [PMID: 34234861 PMCID: PMC8247394 DOI: 10.7150/jca.57231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Intermediate risk acute myeloid leukemia (AML) comprises around 50% of AML patients and is featured with heterogeneous clinical outcomes. The study aimed to generate a prediction model to identify intermediate risk AML patients with an inferior survival. We performed targeted next generation sequencing analysis for 121 patients with 2017 European LeukemiaNet-defined intermediate risk AML, revealing 122 mutated genes, with 24 genes mutated in > 10% of patients. A prognostic nomogram characterized by white blood cell count ≥10×109/L at diagnosis, mutated DNMT3A and genes involved in signaling pathways was developed for 110 patients who were with clinical outcomes. Two subgroups were identified: intermediate low risk (ILR; 43.6%, 48/110) and intermediate high risk (IHR; 56.4%, 62/110). The model was prognostic of overall survival (OS) and relapse-free survival (RFS) (OS: Concordance index [C-index]: 0.703, 95%CI: 0.643-0.763; RFS: C-index: 0.681, 95%CI 0.620-0.741), and was successfully validated with two independent cohorts. Allogeneic hematopoietic stem cell transplantation (alloHSCT) reduced the relapse risk of IHR patients (3-year RFS: alloHSCT: 40.0±12.8% vs. chemotherapy: 8.6±5.8%, P= 0.010). The prediction model can help identify patients with an unfavorable prognosis and refine risk-adapted therapy for intermediate risk AML patients.
Collapse
Affiliation(s)
- Xiaoxia Hu
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Bianhong Wang
- Department of Hematology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.,Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qi Chen
- Department of Health Statistics, Second Military Medical University, Shanghai 200433, China
| | - Aijie Huang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Weijia Fu
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Lixia Liu
- Acornmed Biotechnology Co., Ltd. Beijing, 100176, China
| | - Ying Zhang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Gusheng Tang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Hui Cheng
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Xiong Ni
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Lei Gao
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Jie Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Li Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Weiping Zhang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Jianmin Yang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd. Beijing, 100176, China
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Hematology and Oncology, Shenzhen University General Hospital; Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518000, China
| | - Jianmin Wang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai 200433, China
| |
Collapse
|
13
|
Yuan S, Sun G, Zhang Y, Dong F, Cheng H, Cheng T. Understanding the "SMART" features of hematopoietic stem cells and beyond. SCIENCE CHINA. LIFE SCIENCES 2021; 64:2030-2044. [PMID: 34341896 PMCID: PMC8328818 DOI: 10.1007/s11427-021-1961-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Since the huge success of bone marrow transplantation technology in clinical practice, hematopoietic stem cells (HSCs) have become the gold standard for defining the properties of adult stem cells (ASCs). Here, we describe the "self-renewal, multi-lineage differentiation, apoptosis, rest, and trafficking" or "SMART" model, which has been developed based on data derived from studies of HSCs as the most well-characterized stem cell type. Given the potential therapeutic applications of ASCs, we delineate the key characteristics of HSCs using this model and speculate on the physiological relevance of stem cells identified in other tissues. Great strides are being made in understanding the biology of ASCs, and efforts are now underway to develop safe and effective ASC-based therapies in this emerging area.
Collapse
Affiliation(s)
- Shiru Yuan
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Guohuan Sun
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Yawen Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Fang Dong
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| | - Hui Cheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| | - Tao Cheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| |
Collapse
|
14
|
Bernardi S, Foroni C, Zanaglio C, Re F, Polverelli N, Turra A, Morello E, Farina M, Cattina F, Gandolfi L, Zollner T, Buttini EA, Malagola M, Russo D. Feasibility of tumor‑derived exosome enrichment in the onco‑hematology leukemic model of chronic myeloid leukemia. Int J Mol Med 2019; 44:2133-2144. [PMID: 31638195 PMCID: PMC6844640 DOI: 10.3892/ijmm.2019.4372] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/12/2019] [Indexed: 01/18/2023] Open
Abstract
Due to the discovery of their role in intra-cellular communications, exosomes, which carry information specific to the cell of origin, have garnered considerable attention in cancer research. Moreover, there is evidence to suggest the possibility of isolating different exosome sub-populations based on target antigens at the cell surface. Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia characterized by the break-point cluster region-proto-oncogene 1 tyrosine-protein kinase (BCR-ABL1) fusion-gene, derived from the t (9;22) translocation. Tyrosine kinase inhibitors (TKIs) target BCR-ABL1 protein and induce major or deep molecular responses in the majority of patients. Despite the fact that several studies have demonstrated the persistence of leukemic cells in the bone marrow niche, even following treatment, TKIs prolong patient survival time and facilitate treatment-free remission. These characteristics render CML a plausible model for investigating the feasibility of tumor-derived exosome fraction enrichment. In the present study, patients in the chronic phase (CP) of CML were treated with TKIs, and the quantification of the BCR-ABL1 exosomal transcript was performed using digital PCR (dPCR). The possibility of tumor-derived exosomes enrichment was confirmed, and for the first time, to the best of our knowledge, the detection of the BCR-ABL1 transcript highlighted the presence of active leukemic cells in patients with CP-CML. According to these findings, tumor-derived exosomes may be considered a novel tool for the identification of active leukemic cells, and for the assessment of innovative monitoring focused on the biological functions of exosomes in CML.
Collapse
Affiliation(s)
- Simona Bernardi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Chiara Foroni
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Camilla Zanaglio
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Federica Re
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Nicola Polverelli
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Alessandro Turra
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Enrico Morello
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Mirko Farina
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Federica Cattina
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Lisa Gandolfi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Tatiana Zollner
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Eugenia Accorsi Buttini
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Michele Malagola
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Domenico Russo
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| |
Collapse
|
15
|
Roma-Rodrigues C, Pombo I, Raposo L, Pedrosa P, Fernandes AR, Baptista PV. Nanotheranostics Targeting the Tumor Microenvironment. Front Bioeng Biotechnol 2019; 7:197. [PMID: 31475143 PMCID: PMC6703081 DOI: 10.3389/fbioe.2019.00197] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is considered the most aggressive malignancy to humans, and definitely the major cause of death worldwide. Despite the different and heterogenous presentation of the disease, there are pivotal cell elements involved in proliferation, differentiation, and immortalization, and ultimately the capability to evade treatment strategies. This is of utmost relevance when we are just beginning to grasp the complexity of the tumor environment and the molecular "evolution" within. The tumor micro-environment (TME) is thought to provide for differentiation niches for clonal development that results in tremendous cancer heterogeneity. To date, conventional cancer therapeutic strategies against cancer are failing to tackle the intricate interplay of actors within the TME. Nanomedicine has been proposing innovative strategies to tackle this TME and the cancer cells that simultaneously provide for biodistribution and/or assessment of action. These nanotheranostics systems are usually multi-functional nanosystems capable to carry and deliver active cargo to the site of interest and provide diagnostics capability, enabling early detection, and destruction of cancer cells in a more selective way. Some of the most promising multifunctional nanosystems are based on gold nanoparticles, whose physic-chemical properties have prompt for the development of multifunctional, responsive nanomedicines suitable for combinatory therapy and theranostics. Herein, we shall focus on the recent developments relying on the properties of gold nanoparticles as the basis for nanotheranostics systems against the heterogeneity within the TME.
Collapse
Affiliation(s)
| | | | | | | | | | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Costa da Caparica, Portugal
| |
Collapse
|