1
|
Humayra S, Yahya N, Ning CJ, Mir IA, Mohamed AL, Manan HA. Systematic review of cardiovascular magnetic resonance imaging T1 and T2 mapping in patients with Takotsubo syndrome. Heliyon 2024; 10:e29755. [PMID: 38707280 PMCID: PMC11068528 DOI: 10.1016/j.heliyon.2024.e29755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Background Current imaging advancements quantify the use of cardiovascular magnetic resonance (CMR) derived T1 and T2 tissue characterization as robust indicators for cardiomyopathies, but limited literature exists on its clinical application in Takotsubo syndrome (TTS). This systematic review evaluated the T1 and T2 parametric mapping to delineate the current diagnostic and prognostic CMR imaging outcomes in TTS. Methods A comprehensive literature search until October 2023 was performed on ScienceDirect, PubMed, Web of Science, and Cochrane Library by two independent reviewers adhering to the PRISMA framework. The Newcastle-Ottawa Scale (NOS) was used to evaluate the methodological quality of studies. Results Out of 198 results, 8 studies were included in this qualitative synthesis, accounting for a total population of 399 subjects (TTS = 201, controls = 175, acute myocarditis = 14, and acute regional myocardial oedema without infarction = 9). Approximately 50.4 % were TTS patients aged between 61 and 73 years, whereof, females (n = 181, 90.0 %) and apical variants (n = 180, 89.6 %) were significantly higher, and emotional stressor (n = 42; 20.9 %) was more prevalent than physical (n = 27; 13.4 %). The NOS identified 62.5 % of studies as moderate and 37.5 % as high quality. Parametric tissue mapping revealed significantly prolonged T1 and T2 relaxation times at 1.5T and 3T respectively in TTS (1053-1164 msec, 1292-1438 msec; and 56-67 msec, 60-90 msec) with higher extracellular volume (ECV) fraction (29-36 %), compared to healthy subjects (944-1211 msec, 1189-1251 msec; and 46-54 msec, 32-68 msec; 23-29 %) and myocarditis (1058 msec, 60 msec). Other significant myocardial abnormalities included increased left ventricular (LV) end-systolic and diastolic volume and reduced global longitudinal strain. Overall, myocardial oedema, altered LV mass and strain, and worse LV systolic function, with higher native T1, T2, and ECV values were consistent. Conclusions Future research with substantially larger clinical trials is vital to explore the CMR imaging findings in diverse TTS patient cohorts and correlate the T1 and T2 mapping outcomes with demographic/clinical covariates. CMR is a valuable imaging tool for TTS diagnosis and prognostication. T1 and T2 parametric mapping facilitates the quantification of oedema, inflammation, and myocardial injury in Takotsubo.
Collapse
Affiliation(s)
- Syeda Humayra
- Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, University Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Noorazrul Yahya
- Diagnostic Imaging & Radiotherapy Program, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Chai Jia Ning
- Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, University Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
- Department of Radiology and Intervention, Hospital Pakar Kanak-Kanak (UKM Specialist Children's Hospital), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - Imtiyaz Ali Mir
- Department of Physiotherapy, M Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
- Faculty of Health Sciences, Lincoln University College, Petaling Jaya, 47301, Selangor, Malaysia
| | - Abdul Latiff Mohamed
- Faculty of Medicine, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Hanani Abdul Manan
- Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, University Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
- Department of Radiology and Intervention, Hospital Pakar Kanak-Kanak (UKM Specialist Children's Hospital), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Celeski M, Nusca A, De Luca VM, Antonelli G, Cammalleri V, Melfi R, Mangiacapra F, Ricottini E, Gallo P, Cocco N, Rinaldi R, Grigioni F, Ussia GP. Takotsubo Syndrome and Coronary Artery Disease: Which Came First-The Chicken or the Egg? J Cardiovasc Dev Dis 2024; 11:39. [PMID: 38392253 PMCID: PMC10889783 DOI: 10.3390/jcdd11020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Takotsubo syndrome (TTS) is a clinical condition characterized by temporary regional wall motion anomalies and dysfunction that extend beyond a single epicardial vascular distribution. Various pathophysiological mechanisms, including inflammation, microvascular dysfunction, direct catecholamine toxicity, metabolic changes, sympathetic overdrive-mediated multi-vessel epicardial spasms, and transitory ischemia may cause the observed reversible myocardial stunning. Despite the fact that TTS usually has an acute coronary syndrome-like pattern of presentation, the absence of culprit atherosclerotic coronary artery disease is often reported at coronary angiography. However, the idea that coronary artery disease (CAD) and TTS conditions are mutually exclusive has been cast into doubt by numerous recent studies suggesting that CAD may coexist in many TTS patients, with significant clinical and prognostic repercussions. Whether the relationship between CAD and TTS is a mere coincidence or a bidirectional cause-and-effect is still up for debate, and misdiagnosis of the two disorders could lead to improper patient treatment with unfavourable outcomes. Therefore, this review seeks to provide a profound understanding of the relationship between CAD and TTS by analyzing potential common underlying pathways, addressing challenges in differential diagnosis, and discussing medical and procedural techniques to treat these conditions appropriately.
Collapse
Affiliation(s)
- Mihail Celeski
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Annunziata Nusca
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Valeria Maria De Luca
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Giorgio Antonelli
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Valeria Cammalleri
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Rosetta Melfi
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Fabio Mangiacapra
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Elisabetta Ricottini
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Paolo Gallo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Nino Cocco
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Raffaele Rinaldi
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Francesco Grigioni
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Gian Paolo Ussia
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
3
|
Holby SN, Richardson TL, Laws JL, McLaren TA, Soslow JH, Baker MT, Dendy JM, Clark DE, Hughes SG. Multimodality Cardiac Imaging in COVID. Circ Res 2023; 132:1387-1404. [PMID: 37167354 PMCID: PMC10171309 DOI: 10.1161/circresaha.122.321882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Infection with SARS-CoV-2, the virus that causes COVID, is associated with numerous potential secondary complications. Global efforts have been dedicated to understanding the myriad potential cardiovascular sequelae which may occur during acute infection, convalescence, or recovery. Because patients often present with nonspecific symptoms and laboratory findings, cardiac imaging has emerged as an important tool for the discrimination of pulmonary and cardiovascular complications of this disease. The clinician investigating a potential COVID-related complication must account not only for the relative utility of various cardiac imaging modalities but also for the risk of infectious exposure to staff and other patients. Extraordinary clinical and scholarly efforts have brought the international medical community closer to a consensus on the appropriate indications for diagnostic cardiac imaging during this protracted pandemic. In this review, we summarize the existing literature and reference major societal guidelines to provide an overview of the indications and utility of echocardiography, nuclear imaging, cardiac computed tomography, and cardiac magnetic resonance imaging for the diagnosis of cardiovascular complications of COVID.
Collapse
Affiliation(s)
- S Neil Holby
- Cardiovascular Medicine Fellowship, Division of Cardiology, Department of Internal Medicine (S.N.H., T.L.R., J.L.L.), Vanderbilt University Medical Center
| | - Tadarro Lee Richardson
- Cardiovascular Medicine Fellowship, Division of Cardiology, Department of Internal Medicine (S.N.H., T.L.R., J.L.L.), Vanderbilt University Medical Center
| | - J Lukas Laws
- Cardiovascular Medicine Fellowship, Division of Cardiology, Department of Internal Medicine (S.N.H., T.L.R., J.L.L.), Vanderbilt University Medical Center
| | - Thomas A McLaren
- Division of Cardiology, Department of Internal Medicine, Department of Radiology & Radiological Sciences (T.A.M., S.G.H.), Vanderbilt University Medical Center
| | - Jonathan H Soslow
- Thomas P. Graham Jr Division of Pediatric Cardiology, Department of Pediatrics (J.H.S.), Vanderbilt University Medical Center
| | - Michael T Baker
- Division of Cardiology, Department of Internal Medicine (M.T.B., J.M.D.), Vanderbilt University Medical Center
| | - Jeffrey M Dendy
- Division of Cardiology, Department of Internal Medicine (M.T.B., J.M.D.), Vanderbilt University Medical Center
| | - Daniel E Clark
- Division of Cardiology, Department of Internal Medicine, Stanford University School of Medicine (D.E.C.)
| | - Sean G Hughes
- Division of Cardiology, Department of Internal Medicine, Department of Radiology & Radiological Sciences (T.A.M., S.G.H.), Vanderbilt University Medical Center
| |
Collapse
|
4
|
Ramrattan A, Gonzalez I, Abdullah H, Maraj K, Browne M. A Myasthenic Crisis Complicated by a Takotsubo Cardiomyopathy. Cureus 2022; 14:e21067. [PMID: 35036232 PMCID: PMC8752402 DOI: 10.7759/cureus.21067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 11/05/2022] Open
|
5
|
Ramos-Rodriguez A, Fernandez-Bravo C, Estepa-Pedregosa L, Rodriguez-Gonzalez M. The Pivotal Role of Echocardiography in the Diagnosis of Stress-Induced Cardiomyopathy Presenting with Atypical Pattern in Critically Ill Children. An Illustrative Case Report. Curr Med Imaging 2022; 18:1003-1011. [PMID: 35170419 DOI: 10.2174/1573405618666220216121424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Takotsubo cardiomyopathy (TCM) has some distinctive features like greater proportion of reverse-TCM and central nervous system disease as a prevalent triggering cause. We expose the case of a child with cardiogenic shock presenting an atypical echocardiographic TCM pattern on an echocardiography, after an acute neurologic trigger. We also include a systematic literature review of previously described cases of atypical-TCM in children. CASE REPORT A previously healthy 9 year-old boy with status epilepticus presented abrupt cardiogenic shock. The EKG showed signs of myocardial ischemia, cardiac biomarkers NT-proBNP (2756 pg/mL ) and Troponin I (1707 pg/mL ) , and the echocardiography exposed a dilated LV with severely reduced systolic function (LVEF 28%) along with hypokinetic mid-basal segments (circumferential ballooning), and preserved hypercontractile apical segments, with the normal origin of both coronary arterial systems. A presumptive diagnosis of "reverse", "inverse" or atypical Takotsubo cardiomyopathy was built based on the echocardiographic findings, apart from the ACS-like EKG findings, the raised cardiac biomarkers, and the neurological trigger of the hyper catecholaminergic state. Despite cardiovascular improvement with supportive treatment, the patient eventually expired on day 2 after PICU admission due to neurological complications. As shown in our systematic review, only 19 similar cases have been reported to date. CONCLUSION With the report of this unusual case, we aim to point out the fundamental role of bedside echocardiography as a diagnostic test for critically ill children presenting with ACS-like in the context of neurosurgical emergencies, where bedside echocardiography itself can accurately establish a presumptive diagnosis of TCM.
Collapse
|
6
|
Montone RA, La Vecchia G, Buono MGD, Abbate A, Sanna T, Pedicino D, Niccoli G, Antonelli M, Crea F. Takotsubo Syndrome in Intensive Cardiac Care Unit: Challenges in Diagnosis and Management. Curr Probl Cardiol 2021; 47:101084. [PMID: 34942270 DOI: 10.1016/j.cpcardiol.2021.101084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023]
Abstract
Takotsubo syndrome (TTS) is an acute reversible form of myocardial dysfunction that is often associated with serious adverse in-hospital complications, including acute heart failure, cardiogenic shock and life-threatening arrythmias. In the absence of randomized clinical trials, its management in the acute phase is based on empirical supportive pharmacological and non-pharmacological measures.In this review article, we aimed at providing an overview of the acute clinical manifestations of patients presenting with TTS, highlighting the predictors of a worse short-term outcome, along with the challenges in therapeutic management of TTS-related complications in the acute care setting.
Collapse
Affiliation(s)
- Rocco Antonio Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Giulia La Vecchia
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond
| | - Antonio Abbate
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond
| | - Tommaso Sanna
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Daniela Pedicino
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giampaolo Niccoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
7
|
Rajiah P, Kirsch J, Bolen MA, Batlle JC, Brown RKJ, Francois CJ, Galizia MS, Hanneman K, Inacio JR, Johri AM, Lee DC, Singh SP, Villines TC, Wann S, Zimmerman SL, Abbara S. ACR Appropriateness Criteria® Nonischemic Myocardial Disease with Clinical Manifestations (Ischemic Cardiomyopathy Already Excluded). J Am Coll Radiol 2021; 18:S83-S105. [PMID: 33651982 DOI: 10.1016/j.jacr.2021.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Nonischemic cardiomyopathies encompass a broad spectrum of myocardial disorders with mechanical or electrical dysfunction without evidence of ischemia. There are five broad variants of nonischemic cardiomyopathies; hypertrophic cardiomyopathy (Variant 1), restrictive or infiltrative cardiomyopathy (Variant 2), dilated or unclassified cardiomyopathy (Variant 3), arrhythmogenic cardiomyopathy (Variant 4), and inflammatory cardiomyopathy (Variant 5). For variants 1, 3, and 4, resting transthoracic echocardiography, MRI heart function and morphology without and with contrast, and MRI heart function and morphology without contrast are the usually appropriate imaging modalities. For variants 2 and 5, resting transthoracic echocardiography and MRI heart function and morphology without and with contrast are the usually appropriate imaging modalities. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
| | - Jacobo Kirsch
- Panel Chair, Cleveland Clinic Florida, Weston, Florida
| | - Michael A Bolen
- Panel Vice-Chair, Cleveland Clinic, Cleveland, Ohio, Radiology Fellowship Director for Cardiovascular CT/MRI Cleveland Clinic Main Campus
| | - Juan C Batlle
- Miami Cardiac and Vascular Institute and Baptist Health of South Florida, Miami, Florida
| | - Richard K J Brown
- University of Utah, Department of Radiology and Imaging Sciences, Salt Lake City, Utah
| | | | | | - Kate Hanneman
- Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada, Director, Cardiac Imaging Research, Department of Medical Imaging, University of Toronto
| | - Joao R Inacio
- The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Amer M Johri
- Queen's University, Kingston, Ontario, Canada, Cardiology expert
| | - Daniel C Lee
- Northwestern University Feinberg School of Medicine Chicago, Illinois, Society for Cardiovascular Magnetic Resonance, Co-Director, Cardiovascular Magnetic Resonance Imaging, Northwestern University Feinberg School of Medicine
| | | | - Todd C Villines
- University of Virginia Health System, Charlottesville, Virginia, Society of Cardiovascular Computed Tomography
| | - Samuel Wann
- Wisconsin Heart Hospital, Milwaukee, Wisconsin, Nuclear cardiology expert
| | | | - Suhny Abbara
- Specialty Chair, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
8
|
Díaz-Navarro R. Takotsubo syndrome: the broken-heart syndrome. THE BRITISH JOURNAL OF CARDIOLOGY 2021; 28:11. [PMID: 35747479 PMCID: PMC8822514 DOI: 10.5837/bjc.2021.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Takotsubo syndrome - also known as broken-heart syndrome, Takotsubo cardiomyopathy, and stress-induced cardiomyopathy - is a recently discovered acute cardiac disease first described in Japan in 1991. This review aims to update understanding on the epidemiology, pathophysiology, clinical presentation, diagnosis, and treatment of Takotsubo syndrome, highlighting aspects of interest to cardiologists and general practitioners.
Collapse
Affiliation(s)
- Rienzi Díaz-Navarro
- Professor of Cardiology, Director of Internal Medicine Department, School of Medicine, and Researcher at the Center for Biomedical Research Faculty of Medicine, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar, 2540064, Chile
| |
Collapse
|
9
|
Broncano J, Bhalla S, Caro P, Hidalgo A, Vargas D, Williamson E, Gutiérrez F, Luna A. Cardiac MRI in Patients with Acute Chest Pain. Radiographics 2020; 41:8-31. [PMID: 33337967 DOI: 10.1148/rg.2021200084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acute chest pain is a common reason for visits to the emergency department. It is important to distinguish among the various causes of acute chest pain, because treatment and prognosis are substantially different among the various conditions. It is critical to exclude acute coronary syndrome (ACS), which is a major cause of hospitalization, death, and health care costs worldwide. Myocardial ischemia is defined as potential myocyte death secondary to an imbalance between oxygen supply and demand due to obstruction of an epicardial coronary artery. Unobstructed coronary artery disease can have cardiac causes (eg, myocarditis, myocardial infarction with nonobstructed coronary arteries, and Takotsubo cardiomyopathy), and noncardiac diseases can manifest with acute chest pain and increased serum cardiac biomarker levels. In the emergency department, cardiac MRI may aid in the identification of patients with non-ST-segment elevation myocardial infarction or unstable angina or ACS with unobstructed coronary artery disease, if the patient's clinical history is known to be atypical. Also, cardiac MRI is excellent for risk stratification of patients for adverse left ventricular remodeling or major adverse cardiac events. Cardiac MRI should be performed early in the course of the disease (<2 weeks after onset of symptoms). Steady-state free-precession T2-weighted MRI with late gadolinium enhancement is the mainstay of the cardiac MRI protocol. Further sequences can be used to analyze the different pathophysiologic subjacent mechanisms of the disease, such as microvascular obstruction or intramyocardial hemorrhage. Finally, cardiac MRI may provide several prognostic biomarkers that help in follow-up of these patients. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Jordi Broncano
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Sanjeev Bhalla
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Pilar Caro
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Alberto Hidalgo
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Daniel Vargas
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Eric Williamson
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Fernando Gutiérrez
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Antonio Luna
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| |
Collapse
|
10
|
Ojha V, Khurana R, Ganga KP, Kumar S. Advanced cardiac magnetic resonance imaging in takotsubo cardiomyopathy. Br J Radiol 2020; 93:20200514. [PMID: 32795180 DOI: 10.1259/bjr.20200514] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Takotsubo cardiomyopathy (TC) is a reversible condition in which there is transient left ventricular (LV) dysfunction characterised most commonly by basal hyperkinesis and mid-apical LV ballooning and hypokinesia. It is said to be triggered by stress and mimics, such as acute coronary syndrome (ACS) clinically. Diagnosis is usually suspected on echocardiography due to the characteristic contraction pattern in a patient with symptoms and signs of ACS but normal coronary arteries on catheter angiography. Cardiac magnetic resonance (CMR), with its latest advancements, is the diagnostic modality of choice for diagnosis, prognosis and follow-up of patients. The advances in CMR (including T1, T2, ECV mapping and threshold-based late gadolinium enhancement (LGE) measurements have revolutionised the role of CMR in tissue characterisation and prognostication in patients with TC. In this review, we highlight the current role of CMR in management of TC and enumerate the CMR findings in TC as well the current advances in the field of CMR, which could help in prognosticating these patients.
Collapse
Affiliation(s)
- Vineeta Ojha
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India-110029
| | - Rishabh Khurana
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India-110029
| | - Kartik P Ganga
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India-110029
| | - Sanjeev Kumar
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India-110029
| |
Collapse
|
11
|
Yalta K, Gurdogan M, Palabiyik O. Apical aneurysm or transient apical ballooning? Potential dilemma in risk stratification of hypertrophic cardiomyopathy. Heart 2020; 106:1111. [DOI: 10.1136/heartjnl-2020-316747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
12
|
Abstract
PURPOSE OF REVIEW Takotsubo syndrome represents an increasingly recognized clinical entity characterized by a reversible acute myocardial dysfunction, often triggered by an emotional or physical stress, and independent of an underlying epicardial coronary artery disease. The diagnosis is often challenging because of the nonspecific clinical presentation and the inconclusive noninvasive diagnostic imaging. RECENT FINDINGS The present review provides a brief overview of Takotsubo syndrome clinical presentation and guides the clinician through the diagnostic work-up of Takotsubo syndrome, highlighting clues into differential diagnosis. A review of clinical management is also provided. SUMMARY Despite increasing awareness and recognition, the diagnosis of Takotsubo syndrome remains challenging and Takotsubo syndrome is often underdiagnosed or misdiagnosed. The prompt recognition of Takotsubo syndrome portends relevant prognostic and therapeutic implications.
Collapse
|
13
|
Girgis M, Sasson Z. Takotsubo in Acute and Chronic Coronary Artery Disease. CJC Open 2020; 1:264-267. [PMID: 32159119 PMCID: PMC7063644 DOI: 10.1016/j.cjco.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 01/11/2023] Open
Abstract
Cardiomyopathy of Takotsubo syndrome (TS) is typically triggered by an emotional stress in postmenopausal women. Coexistent coronary artery disease presents diagnostic dilemmas in patients with TS, as seen in the 2 cases presented. In the first case, acute coronary syndrome acts as a physical trigger for TS when a middle-aged man presents with an inferior myocardial infarct, and in the second case, coronary artery disease is a bystander when an elderly woman develops TS after a fall and facial trauma. The novel teaching point is that acute non–left anterior descending acute coronary syndrome could trigger TS.
Collapse
Affiliation(s)
- Mina Girgis
- Division of Cardiology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Zion Sasson
- Division of Cardiology, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
14
|
García Peña ÁA, Barón Otero AM. Diagnóstico y estudio de cardiopatías infrecuentes: multimodalidad – miocardiopatía de estrés. REVISTA COLOMBIANA DE CARDIOLOGÍA 2019. [DOI: 10.1016/j.rccar.2019.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
15
|
Medina de Chazal H, Del Buono MG, Keyser-Marcus L, Ma L, Moeller FG, Berrocal D, Abbate A. Stress Cardiomyopathy Diagnosis and Treatment: JACC State-of-the-Art Review. J Am Coll Cardiol 2018; 72:1955-1971. [PMID: 30309474 PMCID: PMC7058348 DOI: 10.1016/j.jacc.2018.07.072] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022]
Abstract
Stress cardiomyopathy is an acute reversible heart failure syndrome initially believed to represent a benign condition due to its self-limiting clinical course, but now recognized to be associated with a non-negligible rate of serious complications such as ventricular arrhythmias, systemic thromboembolism, and cardiogenic shock. Due to an increased awareness and recognition, the incidence of stress cardiomyopathy has been rising (15-30 cases per 100,000 per year), although the true incidence is unknown as the condition is likely underdiagnosed. Stress cardiomyopathy represents a form of neurocardiogenic myocardial stunning, and while the link between the brain and the heart is established, the exact pathophysiological mechanisms remain unclear. We herein review the proposed risk factors and triggers for the syndrome and discuss a practical approach to diagnosis and treatment of the patients with stress cardiomyopathy, highlighting potential challenges and unresolved questions.
Collapse
Affiliation(s)
- Horacio Medina de Chazal
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia; Department of Cardiology, Hospital Italiano, Buenos Aires, Argentina
| | - Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia; 'Dianne and C. Kenneth Wright' Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia
| | - Lori Keyser-Marcus
- 'Dianne and C. Kenneth Wright' Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia
| | - Liangsuo Ma
- Institute of Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia
| | - F Gerard Moeller
- 'Dianne and C. Kenneth Wright' Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia; Institute of Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel Berrocal
- Department of Cardiology, Hospital Italiano, Buenos Aires, Argentina
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia; 'Dianne and C. Kenneth Wright' Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
16
|
Abstract
Takotsubo cardiomyopathy is described as a transient reversible cardiomyopathy which typically occurs in older women after emotional or physical stress. This cardiomyopathy is also recognized as a "syndrome" because it develops in conjunction with various diseases. Since the clinical presentation of takotsubo syndrome (TTS) is similar to acute coronary syndrome (ACS), TTS should be distinguished from ischemic heart disease. Although the pathophysiology of TTS has not well been established, a number of its specific features have been suggested. The predictor of mortality in TTS is still unknown. In this review article, we describe a series of treatment decisions in TTS.
Collapse
Affiliation(s)
- Mika Watanabe
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine
| | - Masaki Izumo
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine
| | - Yoshihiro J Akashi
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine
| |
Collapse
|
17
|
Madias JE. Could echocardiography determine whether spontaneous coronary dissection is occasionally associated with Takotsubo syndrome? Echocardiography 2018; 35:241-243. [DOI: 10.1111/echo.13804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- John E. Madias
- Icahn School of Medicine at Mount Sinai; New York NY USA
- Division of Cardiology; Elmhurst Hospital Center; Elmhurst NY USA
| |
Collapse
|
18
|
Mavrogeni S, Mertzanos G, Grassos C, Kafkas N, Karabela G, Aggeli C, Vartela V, Voudris V, Kolovou G. “Role of cardiovascular magnetic resonance in assessing patients with chest pain, increased troponin levels and normal coronary arteries”. Hellenic J Cardiol 2017; 58:384-386. [DOI: 10.1016/j.hjc.2017.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/18/2017] [Accepted: 02/25/2017] [Indexed: 11/24/2022] Open
|
19
|
Madias JE. Transient left ventricular outflow tract obstruction with systolic anterior motion of the mitral valve: A stunning cause. Echocardiography 2017; 34:1262. [DOI: 10.1111/echo.13621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- John E. Madias
- Icahn School of Medicine at Mount Sinai; New York NY USA
- Division of Cardiology; Elmhurst Hospital Center; Elmhurst NY USA
| |
Collapse
|
20
|
Del Buono MG, O'Quinn MP, Garcia P, Gerszten E, Roberts C, Moeller FG, Abbate A. Cardiac arrest due to ventricular fibrillation in a 23-year-old woman with broken heart syndrome. Cardiovasc Pathol 2017; 30:78-81. [PMID: 28802178 DOI: 10.1016/j.carpath.2017.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 11/16/2022] Open
Abstract
Broken heart syndrome, also known as takotsubo cardiomyopathy, is a syndrome characterized by a transient regional systolic dysfunction of the left ventricle associated to a psychological stress. We herein describe a case of a 23-year-old female habitual marijuana user who was resuscitated after cardiac arrest and then diagnosed with midventricular stress cardiomyopathy complicated by subendocardial hemorrhage. We discuss this unique pathological finding, the incidence of arrhythmias in this syndrome, and the possible relation with chronic cannabis and tobacco use. Unfortunately, the patient did not survive, but had she survived, the management of the patient for secondary prevention would have been challenging considering the risk of recurrence with this disease.
Collapse
Affiliation(s)
- Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA; Campus Bio-Medico University, Rome, Italy
| | - Michael P O'Quinn
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Paulo Garcia
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Enrique Gerszten
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Charlotte Roberts
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - F Gerald Moeller
- Institute of Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
21
|
Update on the Role of Cardiac Magnetic Resonance in Acquired Nonischemic Cardiomyopathies. J Thorac Imaging 2017; 31:348-366. [PMID: 27438188 DOI: 10.1097/rti.0000000000000226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiomyopathies refer to a variety of myocardial disorders without underlying coronary artery disease, valvular heart disease, hypertension, or congenital heart disease. Several imaging modalities are available, but cardiac magnetic resonance (CMR) has now established itself as a crucial imaging technique in the evaluation of several cardiomyopathies. It not only provides comprehensive information on structure and function, but also can perform tissue characterization, which helps in establishing the etiology of cardiomyopathy. CMR is also useful in establishing the diagnosis, providing guidance for endomyocardial biopsy, accurate quantification of function, volumes, and fibrosis, prognostic determination, risk stratification, and monitoring response to therapy. In this article, we review the current role of CMR in the evaluation of several acquired nonischemic cardiomyopathies, particularly focusing on recent advances in knowledge. We also discuss in detail a select group of common acquired nonischemic cardiomyopathies.
Collapse
|
22
|
Myocardial infarction associated with a “Takotsubo component”: Some caveats need to be considered. Int J Cardiol 2016; 210:93-4. [DOI: 10.1016/j.ijcard.2016.02.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/14/2016] [Indexed: 11/22/2022]
|
23
|
Madias JE. Ventricular Septal Dissection/Perforation and Takotsubo Syndrome. J Card Surg 2016; 31:163. [DOI: 10.1111/jocs.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John E. Madias
- Icahn School of Medicine at Mount Sinai; New York New York
- Division of Cardiology; Elmhurst Hospital Center; Elmhurst New York
| |
Collapse
|