1
|
Owens-Walton C, Nir TM, Al-Bachari S, Ambrogi S, Anderson TJ, Aventurato ÍK, Cendes F, Chen YL, Ciullo V, Cook P, Dalrymple-Alford JC, Dirkx MF, Druzgal J, Emsley HCA, Guimarães R, Haroon HA, Helmich RC, Hu MT, Johansson ME, Kim HB, Klein JC, Laansma M, Lawrence KE, Lochner C, Mackay C, McMillan CT, Melzer TR, Nabulsi L, Newman B, Opriessnig P, Parkes LM, Pellicano C, Piras F, Piras F, Pirpamer L, Pitcher TL, Poston KL, Roos A, Silva LS, Schmidt R, Schwingenschuh P, Shahid-Besanti M, Spalletta G, Stein DJ, Thomopoulos SI, Tosun D, Tsai CC, van den Heuvel OA, van Heese E, Vecchio D, Villalón-Reina JE, Vriend C, Wang JJ, Wu YR, Yasuda CL, Thompson PM, Jahanshad N, van der Werf Y. A worldwide study of white matter microstructural alterations in people living with Parkinson's disease. NPJ Parkinsons Dis 2024; 10:151. [PMID: 39128907 PMCID: PMC11317500 DOI: 10.1038/s41531-024-00758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
The progression of Parkinson's disease (PD) is associated with microstructural alterations in neural pathways, contributing to both motor and cognitive decline. However, conflicting findings have emerged due to the use of heterogeneous methods in small studies. Here we performed a large diffusion MRI study in PD, integrating data from 17 cohorts worldwide, to identify stage-specific profiles of white matter differences. Diffusion-weighted MRI data from 1654 participants diagnosed with PD (age: 20-89 years; 33% female) and 885 controls (age: 19-84 years; 47% female) were analyzed using the ENIGMA-DTI protocol to evaluate white matter microstructure. Skeletonized maps of fractional anisotropy (FA) and mean diffusivity (MD) were compared across Hoehn and Yahr (HY) disease groups and controls to reveal the profile of white matter alterations at different stages. We found an enhanced, more widespread pattern of microstructural alterations with each stage of PD, with eventually lower FA and higher MD in almost all regions of interest: Cohen's d effect sizes reached d = -1.01 for FA differences in the fornix at PD HY Stage 4/5. The early PD signature in HY stage 1 included higher FA and lower MD across the entire white matter skeleton, in a direction opposite to that typical of other neurodegenerative diseases. FA and MD were associated with motor and non-motor clinical dysfunction. While overridden by degenerative changes in the later stages of PD, early PD is associated with paradoxically higher FA and lower MD in PD, consistent with early compensatory changes associated with the disorder.
Collapse
Grants
- R01 AG058854 NIA NIH HHS
- P41 EB015922 NIBIB NIH HHS
- R01NS107513 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01 MH117601 NIMH NIH HHS
- R01 NS107513 NINDS NIH HHS
- U19 AG062418 NIA NIH HHS
- F32 MH122057 NIMH NIH HHS
- R01 AG059874 NIA NIH HHS
- U.S. Alzheimer’s Association (AARG-23-1149996)
- Health Research Council of New Zealand (20/538; 21/165)
- São Paulo Research Foundation FAPESP-BRAINN Grants# 2013-07559-3 / FAPESP #2022-1178-4
- São Paulo Research Foundation FAPESP-BRAINN Grant # 2013–07559-3.
- Health Research Council of New Zealand (20/538); Marsden Fund New Zealand (UOC2105); Neurological Foundation of New Zealand (2232 PRG); Research and Education Trust Pacific Radiology (MRIJDA).
- Grant from ParkinsonNL (P2023-14); Honoraria from Movement Disorders Society Quebec.
- NINDS R01NS107513
- Engineering and Physical Sciences Research Council (EPSRC) UK
- Parkinson's UK, Cure Parkinsons Trust, Oxford Biomedical Research Centre, GSK-Oxford IMCM.
- JK is supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), and the NIHR Oxford Health Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.
- NIMH 32MH122057
- U19 AG062418
- Health Research Council of New Zealand (20/538); Neurological Foundation of New Zealand (2232 PRG); Research and Education Trust Pacific Radiology (MRIJDA).
- EPSRC UK, MRC UK, GE medical systems, Academy of Medical Sciences UK
- Italian Ministry of Health, grant number RF-2019-12370182
- Health Research Council of New Zealand (21/165)
- Personal fees from Bial, AbbVie and Boston Scientific.
- NIH/NIA
- São Paulo Research Foundation FAPESP-BRAINN Grant # 2013–07559-3; CNPQ (#315953/2021-7) National Council for Scientific and Technological Development
- U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01AG059874, R01MH117601, R01NS107513, R01AG058854, P41EB015922
Collapse
Affiliation(s)
- Conor Owens-Walton
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA.
| | - Talia M Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | | | - Sonia Ambrogi
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Tim J Anderson
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Neurology Department, Te Whatu Ora-Health New Zealand Waitaha Canterbury, Christchurch, New Zealand
| | - Ítalo Karmann Aventurato
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fernando Cendes
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Yao-Liang Chen
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan, ROC
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan, ROC
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Phil Cook
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John C Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Te Kura Mahi ā- Hirikapo | School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Michiel F Dirkx
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Hedley C A Emsley
- Lancaster Medical School, Lancaster University, Lancaster, UK
- Department of Neurology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Rachel Guimarães
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Hamied A Haroon
- Division of Psychology, Communication & Human Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Rick C Helmich
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michele T Hu
- Oxford Parkinson's Disease Centre, Nuffield, Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
| | - Martin E Johansson
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ho Bin Kim
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Johannes C Klein
- Oxford Parkinson's Disease Centre, Nuffield, Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
| | - Max Laansma
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Katherine E Lawrence
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Clare Mackay
- Oxford Parkinson's Disease Centre, Nuffield, Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
| | - Corey T McMillan
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Te Kura Mahi ā- Hirikapo | School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Leila Nabulsi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ben Newman
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Peter Opriessnig
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Laura M Parkes
- Division of Psychology, Communication & Human Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Clelia Pellicano
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Lukas Pirpamer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Toni L Pitcher
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Kathleen L Poston
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Annerine Roos
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Lucas Scárdua Silva
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Petra Schwingenschuh
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Marian Shahid-Besanti
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | | | - Dan J Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Chih-Chien Tsai
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan, ROC
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Odile A van den Heuvel
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eva van Heese
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Julio E Villalón-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Chris Vriend
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
- Amsterdam UMC, Department of Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging program, Amsterdam, The Netherlands
| | - Jiun-Jie Wang
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan, ROC
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan, ROC
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City, Taiwan, ROC
- Department of Chemical Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan, ROC
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan, ROC
- Department of Neurology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Clarissa Lin Yasuda
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ysbrand van der Werf
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Ying Y, Huang X, Song G, Zhao Y, Zhao X, Shi L, Gao Z, Li A, Gao T, Lu H, Fan G. 3D-CAM: a novel context-aware feature extraction framework for neurological disease classification. Front Neurosci 2024; 18:1364338. [PMID: 38486967 PMCID: PMC10938914 DOI: 10.3389/fnins.2024.1364338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
In clinical practice and research, the classification and diagnosis of neurological diseases such as Parkinson's Disease (PD) and Multiple System Atrophy (MSA) have long posed a significant challenge. Currently, deep learning, as a cutting-edge technology, has demonstrated immense potential in computer-aided diagnosis of PD and MSA. However, existing methods rely heavily on manually selecting key feature slices and segmenting regions of interest. This not only increases subjectivity and complexity in the classification process but also limits the model's comprehensive analysis of global data features. To address this issue, this paper proposes a novel 3D context-aware modeling framework, named 3D-CAM. It considers 3D contextual information based on an attention mechanism. The framework, utilizing a 2D slicing-based strategy, innovatively integrates a Contextual Information Module and a Location Filtering Module. The Contextual Information Module can be applied to feature maps at any layer, effectively combining features from adjacent slices and utilizing an attention mechanism to focus on crucial features. The Location Filtering Module, on the other hand, is employed in the post-processing phase to filter significant slice segments of classification features. By employing this method in the fully automated classification of PD and MSA, an accuracy of 85.71%, a recall rate of 86.36%, and a precision of 90.48% were achieved. These results not only demonstrates potential for clinical applications, but also provides a novel perspective for medical image diagnosis, thereby offering robust support for accurate diagnosis of neurological diseases.
Collapse
Affiliation(s)
- Yuhan Ying
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beiing, China
| | - Xin Huang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Guoli Song
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Yiwen Zhao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - XinGang Zhao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ziqi Gao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beiing, China
| | - Andi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beiing, China
| | - Tian Gao
- Shenyang Ligong University, Shenyang, China
| | - Hua Lu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Wang J, Sugiyama A, Yokota H, Hirano S, Yamamoto T, Yamanaka Y, Araki N, Ito S, Paul F, Kuwabara S. Differentiation between Parkinson's Disease and the Parkinsonian Subtype of Multiple System Atrophy Using the Magnetic Resonance T1w/T2w Ratio in the Middle Cerebellar Peduncle. Diagnostics (Basel) 2024; 14:201. [PMID: 38248077 PMCID: PMC10814850 DOI: 10.3390/diagnostics14020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Multiple system atrophy with predominant parkinsonism (MSA-P) can hardly be distinguished from Parkinson's disease (PD) clinically in the early stages. This study investigated whether a standardized T1-weighted/T2-weighted ratio (sT1w/T2w ratio) can effectively detect degenerative changes in the middle cerebellar peduncle (MCP) associated with MSA-P and PD and evaluated its potential to distinguish between these two diseases. We included 35 patients with MSA-P, 32 patients with PD, and 17 controls. T1w and T2w scans were acquired using a 1.5-T MR system. The MCP sT1w/T2w ratio was analyzed via SPM12 using a region-of-interest approach in a normalized space. The diagnostic performance of the MCP sT1w/T2w ratio was compared between the MSA-P, PD, and controls. Patients with MSA-P had significantly lower MCP sT1w/T2w ratios than patients with PD and controls. Furthermore, MCP sT1w/T2w ratios were lower in patients with PD than in the controls. The MCP sT1w/T2w ratio showed excellent or good accuracy for differentiating MSA-P or PD from the control (area under the curve (AUC) = 0.919 and 0.814, respectively) and substantial power for differentiating MSA-P from PD (AUC = 0.724). Therefore, the MCP sT1w/T2w ratio is sensitive in detecting degenerative changes in the MCP associated with MSA-P and PD and is useful in distinguishing MSA-P from PD.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (J.W.); (T.Y.); (S.I.); (S.K.)
| | - Atsuhiko Sugiyama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (J.W.); (T.Y.); (S.I.); (S.K.)
| | - Hajime Yokota
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (J.W.); (T.Y.); (S.I.); (S.K.)
| | - Tatsuya Yamamoto
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (J.W.); (T.Y.); (S.I.); (S.K.)
- Department of Rehabilitation, Division of Occupational Therapy, Chiba Prefectural University of Health Sciences, Chiba 261-0014, Japan
| | - Yoshitaka Yamanaka
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (J.W.); (T.Y.); (S.I.); (S.K.)
- Urayasu Rehabilitation Education Center, Chiba University Hospital, Urayasu 279-0023, Japan
| | - Nobuyuki Araki
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (J.W.); (T.Y.); (S.I.); (S.K.)
| | - Shoichi Ito
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (J.W.); (T.Y.); (S.I.); (S.K.)
- Department of Medical Education, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Einstein Center for Neurosciences, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (J.W.); (T.Y.); (S.I.); (S.K.)
| |
Collapse
|
4
|
Chen B, Cui W, Wang S, Sun A, Yu H, Liu Y, He J, Fan G. Functional connectome automatically differentiates multiple system atrophy (parkinsonian type) from idiopathic Parkinson's disease at early stages. Hum Brain Mapp 2023; 44:2176-2190. [PMID: 36661217 PMCID: PMC10028675 DOI: 10.1002/hbm.26201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Differentiating the parkinsonian variant of multiple system atrophy (MSA-P) from idiopathic Parkinson's disease (IPD) is challenging, especially in the early stages. This study aimed to investigate differences and similarities in the brain functional connectomes of IPD and MSA-P patients and use machine learning methods to explore the diagnostic utility of these features. Resting-state fMRI data were acquired from 88 healthy controls, 76 MSA-P patients, and 53 IPD patients using a 3.0 T scanner. The whole-brain functional connectome was constructed by thresholding the Pearson correlation matrices of 116 regions, and topological properties were evaluated through graph theory approaches. Connectome measurements were used as features in machine learning models (random forest [RF]/logistic regression [LR]/support vector machine) to distinguish IPD and MSA-P patients. Regarding graph metrics, early IPD and MSA-P patients shared network topological properties. Both patient groups showed functional connectivity disruptions within the cerebellum-basal ganglia-cortical network, but these disconnections were mainly in the cortico-thalamo-cerebellar circuits in MSA-P patients and the basal ganglia-thalamo-cortical circuits in IPD patients. Among the connectome parameters, t tests combined with the RF method identified 15 features, from which the LR classifier achieved the best diagnostic performance on the validation set (accuracy = 92.31%, sensitivity = 90.91%, specificity = 93.33%, area under the receiver operating characteristic curve = 0.89). MSA-P and IPD patients show similar whole-brain network topological alterations. MSA-P primarily affects cerebellar nodes, and IPD primarily affects basal ganglia nodes; both conditions disrupt the cerebellum-basal ganglia-cortical network. Moreover, functional connectome parameters showed outstanding value in the differential diagnosis of early MSA-P and IPD.
Collapse
Affiliation(s)
- Boyu Chen
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wenzhuo Cui
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Shanshan Wang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Anlan Sun
- Yizhun Medical AI Co. Ltd, Beijing, People's Republic of China
| | - Hongmei Yu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yu Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jiachuan He
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
5
|
Pasquini J, Firbank MJ, Ceravolo R, Silani V, Pavese N. Diffusion Magnetic Resonance Imaging Microstructural Abnormalities in Multiple System Atrophy: A Comprehensive Review. Mov Disord 2022; 37:1963-1984. [PMID: 36036378 DOI: 10.1002/mds.29195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease characterized by autonomic failure, ataxia, and/or parkinsonism. Its prominent pathological alterations can be investigated using diffusion magnetic resonance imaging (dMRI), a technique that exploits the characteristics of water random motion inside brain tissue. The aim of this report was to review currently available literature on the application of dMRI in MSA and to describe microstructural abnormalities, diagnostic applications, and pathophysiological correlates. Sixty-four published studies involving microstructural investigation using dMRI in MSA were included. Widespread microstructural abnormalities of white matter were described, especially in the middle cerebellar peduncle, corticospinal tract, and hemispheric fibers. Gray matter degeneration was identified as well, with diffuse involvement of subcortical structures, especially in the putamina. Diagnostic applications of dMRI were mostly explored for the differential diagnosis between MSA parkinsonism and Parkinson's disease. Recently, machine learning algorithms for image processing and disease classification have demonstrated high diagnostic accuracy, showing potential for translation into clinical practice. To a lesser extent, clinical correlates of microstructural abnormalities have also been investigated, and abnormalities related to motor, ocular, and cognitive impairments were described. dMRI in MSA has contributed to in vivo identification of known pathological abnormalities. Translation into clinical practice of the latest advancements for the differential diagnosis between MSA and other forms of parkinsonism seems feasible. Current limitations involve the possibility of correctly diagnosing MSA in the very early stages, when the clinical diagnosis is most uncertain. Furthermore, pathophysiological correlates of microstructural abnormalities remain understudied. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michael J Firbank
- Positron Emission Tomography Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Neurodegenerative Diseases Center, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Longitudinal corpus callosum microstructural decline in early-stage Parkinson’s disease in association with akinetic-rigid symptom severity. NPJ Parkinsons Dis 2022; 8:108. [PMID: 36038586 PMCID: PMC9424284 DOI: 10.1038/s41531-022-00372-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/02/2022] [Indexed: 12/26/2022] Open
Abstract
Previous diffusion tensor imaging (DTI) studies of Parkinson’s disease (PD) show reduced microstructural integrity of the corpus callosum (CC) relative to controls, although the characteristics of such callosal degradation remain poorly understood. Here, we utilized a longitudinal approach to identify microstructural decline in the entire volume of the CC and its functional subdivisions over 2 years and related the callosal changes to motor symptoms in early-stage PD. The study sample included 61 PD subjects (N = 61, aged 45–82, 38 M & 23 F, H&Y ≤ 2) from the Parkinson’s Progressive Markers Initiative database (PPMI). Whole-brain voxel-wise results revealed significant fractional anisotropy (FA) and mean diffusivity (MD) changes in the CC, especially in the genu and splenium. Using individually drawn CC regions of interest (ROI), our analysis further revealed that almost all subdivisions of the CC show significant decline in FA to certain extents over the two-year timeframe. Additionally, FA seemed lower in the right hemisphere of the CC at both time-points, and callosal FA decline was associated with FA and MD decline in widespread cortical and subcortical areas. Notably, multiple regression analysis revealed that across-subject akinetic-rigid severity was negatively associated with callosal FA at baseline and 24 months follow-up, and the effect was strongest in the anterior portion of the CC. These results suggest that callosal microstructure alterations in the anterior CC may serve as a viable biomarker for akinetic-rigid symptomology and disease progression, even in early PD.
Collapse
|
7
|
Gu L, Guan X, Gao T, Zhou C, Yang W, Lv D, Wu J, Fang Y, Guo T, Song Z, Xu X, Tian J, Yin X, Zhang M, Zhang B, Pu J, Yan Y. The effect of polygenic risk on white matter microstructural degeneration in Parkinson's disease: A longitudinal Diffusion Tensor Imaging study. Eur J Neurol 2021; 29:1000-1010. [PMID: 34882309 DOI: 10.1111/ene.15201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE This study was undertaken to investigate the effect of genetic risk on whole brain white matter (WM) integrity in patients with Parkinson disease (PD). METHODS Data were acquired from the Parkinson's Progression Markers Initiative (PPMI) database. Polygenic load was estimated by calculating weighted polygenic risk scores (PRS) using (i) all available 26 PD-risk single nucleotide polymorphisms (SNPs) (PRS1) and (ii) 23 SNPs with minor allele frequency (MAF) > 0.05 (PRS2). According to the PRS2, and combined with clinical and diffusion tensor imaging (DTI) data over 3-year follow-up, 60 PD patients were screened and assigned to the low-PRS group (n = 30) and high-PRS group (n = 30) to investigate intergroup differences in clinical profiles and WM microstructure measured by DTI cross-sectionally and longitudinally. RESULTS PRS were associated with younger age at onset in patients with PD (PRS1, Spearman ρ = -0.190, p = 0.003; PRS2, Spearman ρ = -0.189, p = 0.003). The high-PRS group showed more extensive WM microstructural degeneration compared with the low-PRS group, mainly involving the anterior thalamic radiation (AThR) and inferior fronto-occipital fasciculus (IFOF) (p < 0.05). Furthermore, WM microstructural changes in AThR correlated with declining cognitive function (r = -0.401, p = 0.028) and increasing dopaminergic deficits in caudate (r = -0.405, p = 0.030). CONCLUSIONS These findings suggest that PD-associated polygenic load aggravates the WM microstructural degeneration and these changes may lead to poor cognition with continuous dopamine depletion. This study provides advanced evidence that combined with a cumulative PRS and DTI methods may predict disease progression in PD patients.
Collapse
Affiliation(s)
- Luyan Gu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ting Gao
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng Zhou
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenyi Yang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dayao Lv
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Wu
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Fang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Guo
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhe Song
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojun Xu
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinzhen Yin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaping Yan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Hu X, Sun X, Hu F, Liu F, Ruan W, Wu T, An R, Lan X. Multivariate radiomics models based on 18F-FDG hybrid PET/MRI for distinguishing between Parkinson's disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 2021; 48:3469-3481. [PMID: 33829415 DOI: 10.1007/s00259-021-05325-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/20/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE To construct multivariate radiomics models using hybrid 18F-FDG PET/MRI for distinguishing between Parkinson's disease (PD) and multiple system atrophy (MSA). METHODS Ninety patients (60 with PD and 30 with MSA) were randomized to training and test sets in a 7:3 ratio. All patients underwent 18F-fluorodeoxyglucose (18F-FDG) PET/MRI to simultaneously obtain metabolic images (18F-FDG), structural MRI images (T1-weighted imaging (T1WI), T2-weighted imaging (T2WI) and T2-weighted fluid-attenuated inversion recovery (T2/FLAIR)) and functional MRI images (susceptibility-weighted imaging (SWI) and apparent diffusion coefficient). Using PET and five MRI sequences, we extracted 1172 radiomics features from the putamina and caudate nuclei. The radiomics signatures were constructed with the least absolute shrinkage and selection operator algorithm in the training set, with progressive optimization through single-sequence and double-sequence radiomics models. Multivariable logistic regression analysis was used to develop a clinical-radiomics model, combining the optimal multi-sequence radiomics signature with clinical characteristics and SUV values. The diagnostic performance of the models was assessed by receiver operating characteristic and decision curve analysis (DCA). RESULTS The radiomics signatures showed favourable diagnostic efficacy. The optimal model comprised structural (T1WI), functional (SWI) and metabolic (18F-FDG) sequences (RadscoreFDG_T1WI_SWI) with the area under curves (AUCs) of the training and test sets of 0.971 and 0.957, respectively. The integrated model, incorporating RadscoreFDG_T1WI_SWI, three clinical symptoms (disease duration, dysarthria and autonomic failure) and SUVmax, demonstrated satisfactory calibration and discrimination in the training and test sets (0.993 and 0.994, respectively). DCA indicated the highest clinical benefit of the clinical-radiomics integrated model. CONCLUSIONS The radiomics signature with metabolic, structural and functional information provided by hybrid 18F-FDG PET/MRI may achieve promising diagnostic efficacy for distinguishing between PD and MSA. The clinical-radiomics integrated model performed best.
Collapse
Affiliation(s)
- Xuehan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xun Sun
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fang Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tingfan Wu
- GE Healthcare, Pudong New Town, No.1, Huatuo Road, Shanghai, 200000, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
9
|
Wei X, Luo C, Li Q, Hu N, Xiao Y, Liu N, Lui S, Gong Q. White Matter Abnormalities in Patients With Parkinson's Disease: A Meta-Analysis of Diffusion Tensor Imaging Using Tract-Based Spatial Statistics. Front Aging Neurosci 2021; 12:610962. [PMID: 33584244 PMCID: PMC7876070 DOI: 10.3389/fnagi.2020.610962] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Tract-based spatial statistics (TBSS) studies based on diffusion tensor imaging (DTI) have revealed extensive abnormalities in white matter (WM) fibers of Parkinson's disease (PD); however, the results were inconsistent. Therefore, a meta-analytical approach was used in this study to find the most prominent and replicable WM abnormalities of PD. Methods: Online databases were systematically searched for all TBSS studies comparing fractional anisotropy (FA) between patients with PD and controls. Subsequently, we performed the meta-analysis using a coordinate-based meta-analytic software called seed-based d mapping. Meanwhile, meta-regression was performed to explore the potential correlation between the alteration of FA and the clinical characteristics of PD. Results: Out of a total of 1,701 studies that were identified, 23 studies were included. Thirty datasets, including 915 patients (543 men) with PD and 836 healthy controls (449 men), were included in the current study. FA reduction was identified in the body of the corpus callosum (CC; 245 voxels; z = -1.739; p < 0.001) and the left inferior fronto-occipital fasciculus (IFOF) 118 voxels; z = -1.182; p < 0.001). Both CC and IFOF maintained significance in the sensitivity analysis. No increase in FA was identified, but the percentage of male patients with PD was positively associated with the value of FA in the body of the CC. Conclusions: Although some limitations exist, DTI is regarded as a valid way to identify the pathophysiology of PD. It could be more beneficial to integrate DTI parameters with other MRI techniques to explore brain degeneration in PD.
Collapse
Affiliation(s)
- Xia Wei
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyan Luo
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Li
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Na Hu
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Nian Liu
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Zhang Y, Burock MA. Diffusion Tensor Imaging in Parkinson's Disease and Parkinsonian Syndrome: A Systematic Review. Front Neurol 2020; 11:531993. [PMID: 33101169 PMCID: PMC7546271 DOI: 10.3389/fneur.2020.531993] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Diffusion tensor imaging (DTI) allows measuring fractional anisotropy and similar microstructural indices of the brain white matter. Lower than normal fractional anisotropy as well as higher than normal diffusivity is associated with loss of microstructural integrity and neurodegeneration. Previous DTI studies in Parkinson's disease (PD) have demonstrated abnormal fractional anisotropy in multiple white matter regions, particularly in the dopaminergic nuclei and dopaminergic pathways. However, DTI is not considered a diagnostic marker for the earliest Parkinson's disease since anisotropic alterations present a temporally divergent pattern during the earliest Parkinson's course. This article reviews a majority of clinically employed DTI studies in PD, and it aims to prove the utilities of DTI as a marker of diagnosing PD, correlating clinical symptomatology, tracking disease progression, and treatment effects. To address the challenge of DTI being a diagnostic marker for early PD, this article also provides a comparison of the results from a longitudinal, early stage, multicenter clinical cohort of Parkinson's research with previous publications. This review provides evidences of DTI as a promising marker for monitoring PD progression and classifying atypical PD types, and it also interprets the possible pathophysiologic processes under the complex pattern of fractional anisotropic changes in the first few years of PD. Recent technical advantages, limitations, and further research strategies of clinical DTI in PD are additionally discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Psychiatry, War Related Illness and Injury Study Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Marc A Burock
- Department of Psychiatry, Mainline Health, Bryn Mawr Hospital, Bryn Mawr, PA, United States
| |
Collapse
|
11
|
Benear SL, Ngo CT, Olson IR. Dissecting the Fornix in Basic Memory Processes and Neuropsychiatric Disease: A Review. Brain Connect 2020; 10:331-354. [PMID: 32567331 DOI: 10.1089/brain.2020.0749] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The fornix is the primary axonal tract of the hippocampus, connecting it to modulatory subcortical structures. This review reveals that fornix damage causes cognitive deficits that closely mirror those resulting from hippocampal lesions. Methods: We reviewed the literature on the fornix, spanning non-human animal lesion research, clinical case studies of human patients with fornix damage, as well as diffusion-weighted imaging (DWI) work that evaluates fornix microstructure in vivo. Results: The fornix is essential for memory formation because it serves as the conduit for theta rhythms and acetylcholine, as well as providing mnemonic representations to deep brain structures that guide motivated behavior, such as when and where to eat. In rodents and non-human primates, fornix lesions lead to deficits in conditioning, reversal learning, and navigation. In humans, damage to the fornix manifests as anterograde amnesia. DWI research reveals that the fornix plays a key role in mild cognitive impairment and Alzheimer's Disease, and can potentially predict conversion from the former to the latter. Emerging DWI findings link perturbations in this structure to schizophrenia, mood disorders, and eating disorders. Cutting-edge research has investigated how deep brain stimulation of the fornix can potentially attenuate memory loss, control epileptic seizures, and even improve mood. Conclusions: The fornix is essential to a fully functioning memory system and is implicated in nearly all neurological functions that rely on the hippocampus. Future research needs to use optimized DWI methods to study the fornix in vivo, which we discuss, given the difficult nature of fornix reconstruction. Impact Statement The fornix is a white matter tract that connects the hippocampus to several subcortical brain regions and is pivotal for episodic memory functioning. Functionally, the fornix transmits essential neurotransmitters, as well as theta rhythms, to the hippocampus. In addition, it is the conduit by which memories guide decisions. The fornix is biomedically important because lesions to this tract result in irreversible anterograde amnesia. Research using in vivo imaging methods has linked fornix pathology to cognitive aging, mild cognitive impairment, psychosis, epilepsy, and, importantly, Alzheimer's Disease.
Collapse
Affiliation(s)
- Susan L Benear
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Chougar L, Pyatigorskaya N, Degos B, Grabli D, Lehéricy S. The Role of Magnetic Resonance Imaging for the Diagnosis of Atypical Parkinsonism. Front Neurol 2020; 11:665. [PMID: 32765399 PMCID: PMC7380089 DOI: 10.3389/fneur.2020.00665] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The diagnosis of Parkinson's disease and atypical Parkinsonism remains clinically difficult, especially at the early stage of the disease, since there is a significant overlap of symptoms. Multimodal MRI has significantly improved diagnostic accuracy and understanding of the pathophysiology of Parkinsonian disorders. Structural and quantitative MRI sequences provide biomarkers sensitive to different tissue properties that detect abnormalities specific to each disease and contribute to the diagnosis. Machine learning techniques using these MRI biomarkers can effectively differentiate atypical Parkinsonian syndromes. Such approaches could be implemented in a clinical environment and improve the management of Parkinsonian patients. This review presents different structural and quantitative MRI techniques, their contribution to the differential diagnosis of atypical Parkinsonian disorders and their interest for individual-level diagnosis.
Collapse
Affiliation(s)
- Lydia Chougar
- Institut du Cerveau et de la Moelle épinière-ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS UMR 7225, Paris, France.,ICM, "Movement Investigations and Therapeutics" Team (MOV'IT), Paris, France.,ICM, Centre de NeuroImagerie de Recherche-CENIR, Paris, France.,Service de Neuroradiologie, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Nadya Pyatigorskaya
- Institut du Cerveau et de la Moelle épinière-ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS UMR 7225, Paris, France.,ICM, "Movement Investigations and Therapeutics" Team (MOV'IT), Paris, France.,ICM, Centre de NeuroImagerie de Recherche-CENIR, Paris, France.,Service de Neuroradiologie, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Bertrand Degos
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France.,Department of Neurology, Avicenne University Hospital, Sorbonne Paris Nord University, Bobigny, France
| | - David Grabli
- Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Stéphane Lehéricy
- Institut du Cerveau et de la Moelle épinière-ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS UMR 7225, Paris, France.,ICM, "Movement Investigations and Therapeutics" Team (MOV'IT), Paris, France.,ICM, Centre de NeuroImagerie de Recherche-CENIR, Paris, France.,Service de Neuroradiologie, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| |
Collapse
|
13
|
Altered white matter microarchitecture in Parkinson's disease: a voxel-based meta-analysis of diffusion tensor imaging studies. Front Med 2020; 15:125-138. [PMID: 32458190 DOI: 10.1007/s11684-019-0725-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/12/2019] [Indexed: 02/05/2023]
Abstract
This study aimed to define the most consistent white matter microarchitecture pattern in Parkinson's disease (PD) reflected by fractional anisotropy (FA), addressing clinical profiles and methodology-related heterogeneity. Web-based publication databases were searched to conduct a meta-analysis of whole-brain diffusion tensor imaging studies comparing PD with healthy controls (HC) using the anisotropic effect size-signed differential mapping. A total of 808 patients with PD and 760 HC coming from 27 databases were finally included. Subgroup analyses were conducted considering heterogeneity with respect to medication status, disease stage, analysis methods, and the number of diffusion directions in acquisition. Compared with HC, patients with PD had decreased FA in the left middle cerebellar peduncle, corpus callosum (CC), left inferior fronto-occipital fasciculus, and right inferior longitudinal fasciculus. Most of the main results remained unchanged in subgroup meta-analyses of medicated patients, early stage patients, voxel-based analysis, and acquisition with 30 diffusion directions. The subgroup meta-analysis of medication-free patients showed FA decrease in the right olfactory cortex. The cerebellum and CC, associated with typical motor impairment, showed the most consistent FA decreases in PD. Medication status, analysis approaches, and the number of diffusion directions have an important impact on the findings, needing careful evaluation in future meta-analyses.
Collapse
|
14
|
Seki M, Seppi K, Mueller C, Potrusil T, Goebel G, Reiter E, Nocker M, Kremser C, Wildauer M, Schocke M, Gizewski ER, Wenning GK, Poewe W, Scherfler C. Diagnostic Potential of Multimodal MRI Markers in Atypical Parkinsonian Disorders. JOURNAL OF PARKINSONS DISEASE 2019; 9:681-691. [DOI: 10.3233/jpd-181568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Morinobu Seki
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Mueller
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Potrusil
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Goebel
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva Reiter
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Nocker
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Kremser
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Wildauer
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Schocke
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke R. Gizewski
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Scherfler
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Progressive supranuclear palsy and multiple system atrophy: clinicopathological concepts and therapeutic challenges. Curr Opin Neurol 2019; 31:448-454. [PMID: 29746401 DOI: 10.1097/wco.0000000000000581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This update discusses novel aspects on clinicopathological concepts and therapeutic challenges in progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), arising from publications of the last 1.5 years. RECENT FINDINGS The clinical criteria for diagnosis of PSP have been revised. Clinical variability of pathologically defined PSP and MSA makes the development of mature biomarkers for early diagnosis and biomarker-based trial design indispensable. Novel molecular techniques for biomarker supported diagnosis of PSP and MSA and for monitoring disease progression are being studied. Research in the pathophysiology of both diseases generates gradual progress in the understanding of the underlying processes. Several promising disease-modifying therapeutic approaches for PSP and MSA are now moving into clinical trials. SUMMARY Recent research generates insights in the pathophysiological relevant processes and raises hope for earlier clinical diagnosis and disease-modifying therapies of patients with PSP and MSA.
Collapse
|
16
|
Abstract
Qualitative and quantitative structural magnetic resonance imaging offer objective measures of the underlying neurodegeneration in atypical parkinsonism. Regional changes in tissue volume, signal changes and increased deposition of iron as assessed with different structural MRI techniques are surrogate markers of underlying neurodegeneration and may reflect cell loss, microglial proliferation and astroglial activation. Structural MRI has been explored as a tool to enhance diagnostic accuracy in differentiating atypical parkinsonian disorders (APDs). Moreover, the longitudinal assessment of serial structural MRI-derived parameters offers the opportunity for robust inferences regarding the progression of APDs. This review summarizes recent research findings as (1) a diagnostic tool for APDs as well as (2) as a tool to assess longitudinal changes of serial MRI-derived parameters in the different APDs.
Collapse
|
17
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|
18
|
Jellinger KA. Potential clinical utility of multiple system atrophy biomarkers. Expert Rev Neurother 2017; 17:1189-1208. [DOI: 10.1080/14737175.2017.1392239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|