1
|
Park JH, Cho ES, Yoon J, Rhee HJ, Park J, Choi JY, Chung YE. MRI radiomics model differentiates small hepatic metastases and abscesses in periampullary cancer patients. Sci Rep 2024; 14:23541. [PMID: 39384874 PMCID: PMC11464643 DOI: 10.1038/s41598-024-74311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
This multi-center, retrospective study focused on periampullary cancer patients undergoing MRI for hepatic metastasis and abscess differentiation. T1-weighted, T2-weighted, and arterial phase images were utilized to create radiomics models. In the training-set, 112 lesions in 54 patients (median age [IQR, interquartile range], 73 [63-80]; 38 men) were analyzed, and 123 lesions in 55 patients (72 [66-78]; 34 men) comprised the validation set. The T1-weighted + T2-weighted radiomics model showed the highest AUC (0.82, 95% CI 0.75-0.89) in the validation set. Notably, < 30% T1-T2 size discrepancy in MRI findings predicted metastasis (Ps ≤ 0.037), albeit with AUCs of 0.64-0.68 for hepatic metastasis. The radiomics model enhanced radiologists' performance (AUCs, 0.85-0.87 vs. 0.80-0.84) and significantly increased diagnostic confidence (P < 0.001). Although the performance increase lacked statistical significance (P = 0.104-0.281), the radiomics model proved valuable in differentiating small hepatic lesions and enhancing diagnostic confidence. This study highlights the potential of MRI-based radiomics in improving accuracy and confidence in the diagnosis of periampullary cancer-related hepatic lesions.
Collapse
Affiliation(s)
- Jae Hyon Park
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Radiology, Armed Forces Daejeon Hospital, Daejeon, Republic of Korea
| | - Eun-Suk Cho
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jongjin Yoon
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Jin Rhee
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - June Park
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Young Choi
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Eun Chung
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Radiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Huang J, Bai X, Qiu Y, He X. Application of AI on cholangiocarcinoma. Front Oncol 2024; 14:1324222. [PMID: 38347839 PMCID: PMC10859478 DOI: 10.3389/fonc.2024.1324222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Cholangiocarcinoma, classified as intrahepatic, perihilar, and extrahepatic, is considered a deadly malignancy of the hepatobiliary system. Most cases of cholangiocarcinoma are asymptomatic. Therefore, early detection of cholangiocarcinoma is significant but still challenging. The routine screening of a tumor lacks specificity and accuracy. With the application of AI, high-risk patients can be easily found by analyzing their clinical characteristics, serum biomarkers, and medical images. Moreover, AI can be used to predict the prognosis including recurrence risk and metastasis. Although they have some limitations, AI algorithms will still significantly improve many aspects of cholangiocarcinoma in the medical field with the development of computing power and technology.
Collapse
Affiliation(s)
| | | | | | - Xiaodong He
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Zhang H, Meng Z, Ru J, Meng Y, Wang K. Application and prospects of AI-based radiomics in ultrasound diagnosis. Vis Comput Ind Biomed Art 2023; 6:20. [PMID: 37828411 PMCID: PMC10570254 DOI: 10.1186/s42492-023-00147-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Artificial intelligence (AI)-based radiomics has attracted considerable research attention in the field of medical imaging, including ultrasound diagnosis. Ultrasound imaging has unique advantages such as high temporal resolution, low cost, and no radiation exposure. This renders it a preferred imaging modality for several clinical scenarios. This review includes a detailed introduction to imaging modalities, including Brightness-mode ultrasound, color Doppler flow imaging, ultrasound elastography, contrast-enhanced ultrasound, and multi-modal fusion analysis. It provides an overview of the current status and prospects of AI-based radiomics in ultrasound diagnosis, highlighting the application of AI-based radiomics to static ultrasound images, dynamic ultrasound videos, and multi-modal ultrasound fusion analysis.
Collapse
Affiliation(s)
- Haoyan Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zheling Meng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinyu Ru
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yaqing Meng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
4
|
Vetter M, Waldner MJ, Zundler S, Klett D, Bocklitz T, Neurath MF, Adler W, Jesper D. Artificial intelligence for the classification of focal liver lesions in ultrasound - a systematic review. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2023; 44:395-407. [PMID: 37001563 DOI: 10.1055/a-2066-9372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Focal liver lesions are detected in about 15% of abdominal ultrasound examinations. The diagnosis of frequent benign lesions can be determined reliably based on the characteristic B-mode appearance of cysts, hemangiomas, or typical focal fatty changes. In the case of focal liver lesions which remain unclear on B-mode ultrasound, contrast-enhanced ultrasound (CEUS) increases diagnostic accuracy for the distinction between benign and malignant liver lesions. Artificial intelligence describes applications that try to emulate human intelligence, at least in subfields such as the classification of images. Since ultrasound is considered to be a particularly examiner-dependent technique, the application of artificial intelligence could be an interesting approach for an objective and accurate diagnosis. In this systematic review we analyzed how artificial intelligence can be used to classify the benign or malignant nature and entity of focal liver lesions on the basis of B-mode or CEUS data. In a structured search on Scopus, Web of Science, PubMed, and IEEE, we found 52 studies that met the inclusion criteria. Studies showed good diagnostic performance for both the classification as benign or malignant and the differentiation of individual tumor entities. The results could be improved by inclusion of clinical parameters and were comparable to those of experienced investigators in terms of diagnostic accuracy. However, due to the limited spectrum of lesions included in the studies and a lack of independent validation cohorts, the transfer of the results into clinical practice is limited.
Collapse
Affiliation(s)
- Marcel Vetter
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Sebastian Zundler
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Daniel Klett
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universitat Jena, Jena, Germany
- Leibniz-Institute of Photonic Technology, Friedrich Schiller University Jena, Jena, Germany
| | - Markus F Neurath
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Werner Adler
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Jesper
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| |
Collapse
|
5
|
Shen YT, Yue WW, Xu HX. Non-invasive imaging in the diagnosis of combined hepatocellular carcinoma and cholangiocarcinoma. Abdom Radiol (NY) 2023; 48:2019-2037. [PMID: 36961531 DOI: 10.1007/s00261-023-03879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CC) is a rare type of primary liver cancer. It is a complex "biphenotypic" tumor type consisting of bipotential hepatic progenitor cells that can differentiate into cholangiocytes subtype and hepatocytes subtype. The prognosis of patients with cHCC-CC is quite poor with its specific and more aggressive nature. Furthermore, there are no definite demographic or clinical features of cHCC-CC, thus a clear preoperative identification and accurate non-invasive imaging diagnostic analysis of cHCC-CC are of great value. In this review, we first summarized the epidemiological features, pathological findings, molecular biological information and serological indicators of cHCC-CC disease. Then we reviewed the important applications of non-invasive imaging modalities-particularly ultrasound (US)-in cHCC-CC, covering both diagnostic and prognostic assessment of patients with cHCC-CC. Finally, we presented the shortcomings and potential outlooks for imaging studies in cHCC-CC.
Collapse
Affiliation(s)
- Yu-Ting Shen
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Wen-Wen Yue
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072, China.
| | - Hui-Xiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Yuan HX, Wang C, Tang CY, You QQ, Zhang Q, Wang WP. Differential diagnosis of gallbladder neoplastic polyps and cholesterol polyps with radiomics of dual modal ultrasound: a pilot study. BMC Med Imaging 2023; 23:26. [PMID: 36747143 PMCID: PMC9901123 DOI: 10.1186/s12880-023-00982-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To verify whether radiomics techniques based on dual-modality ultrasound consisting of B-mode and superb microvascular imaging (SMI) can improve the accuracy of the differentiation between gallbladder neoplastic polyps and cholesterol polyps. METHODS A total of 100 patients with 100 pathologically proven gallbladder polypoid lesions were enrolled in this retrospective study. Radiomics features on B-mode ultrasound and SMI of each lesion were extracted. Support vector machine was used to classify adenomas and cholesterol polyps of gallbladder for B-mode, SMI and dual-modality ultrasound, respectively, and the classification results were compared among the three groups. RESULTS Six, eight and nine features were extracted for each lesion at B-mode ultrasound, SMI and dual-modality ultrasound, respectively. In dual-modality ultrasound model, the area under the receiver operating characteristic curve (AUC), classification accuracy, sensitivity, specificity, and Youden's index were 0.850 ± 0.090, 0.828 ± 0.097, 0.892 ± 0.144, 0.803 ± 0.149 and 0.695 ± 0.157, respectively. The AUC and Youden's index of the dual-modality model were higher than those of the B-mode model (p < 0.05). The AUC, accuracy, specificity and Youden's index of the dual-modality model were higher than those of the SMI model (p < 0.05). CONCLUSIONS Radiomics analysis of the dual-modality ultrasound composed of B-mode and SMI can improve the accuracy of classification between gallbladder neoplastic polyps and cholesterol polyps.
Collapse
Affiliation(s)
- Hai-xia Yuan
- grid.413087.90000 0004 1755 3939Department of Ultrasound, Zhongshan Hospital of Fudan University (Qingpu Branch), Shanghai, China ,grid.413087.90000 0004 1755 3939Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Department of Ultrasound, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province China
| | - Changyan Wang
- grid.39436.3b0000 0001 2323 5732School of Communication and Information Engineering, Shanghai University, Shanghai, 200444 China ,grid.39436.3b0000 0001 2323 5732The SMART (Smart Medicine and AI-Based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Cong-yu Tang
- grid.413087.90000 0004 1755 3939Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Qi-qin You
- grid.413087.90000 0004 1755 3939Department of Ultrasound, Zhongshan Hospital of Fudan University (Qingpu Branch), Shanghai, China
| | - Qi Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China. .,The SMART (Smart Medicine and AI-Based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China.
| | - Wen-ping Wang
- grid.413087.90000 0004 1755 3939Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
8
|
Abstract
Machine learning (ML) methods are pervading an increasing number of fields of application because of their capacity to effectively solve a wide variety of challenging problems. The employment of ML techniques in ultrasound imaging applications started several years ago but the scientific interest in this issue has increased exponentially in the last few years. The present work reviews the most recent (2019 onwards) implementations of machine learning techniques for two of the most popular ultrasound imaging fields, medical diagnostics and non-destructive evaluation. The former, which covers the major part of the review, was analyzed by classifying studies according to the human organ investigated and the methodology (e.g., detection, segmentation, and/or classification) adopted, while for the latter, some solutions to the detection/classification of material defects or particular patterns are reported. Finally, the main merits of machine learning that emerged from the study analysis are summarized and discussed.
Collapse
|
9
|
Granata V, Fusco R, Belli A, Borzillo V, Palumbo P, Bruno F, Grassi R, Ottaiano A, Nasti G, Pilone V, Petrillo A, Izzo F. Conventional, functional and radiomics assessment for intrahepatic cholangiocarcinoma. Infect Agent Cancer 2022; 17:13. [PMID: 35346300 PMCID: PMC8961950 DOI: 10.1186/s13027-022-00429-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
Background This paper offers an assessment of diagnostic tools in the evaluation of Intrahepatic Cholangiocarcinoma (ICC). Methods Several electronic datasets were analysed to search papers on morphological and functional evaluation in ICC patients. Papers published in English language has been scheduled from January 2010 to December 2021.
Results We found that 88 clinical studies satisfied our research criteria. Several functional parameters and morphological elements allow a truthful ICC diagnosis. The contrast medium evaluation, during the different phases of contrast studies, support the recognition of several distinctive features of ICC. The imaging tool to employed and the type of contrast medium in magnetic resonance imaging, extracellular or hepatobiliary, should change considering patient, departement, and regional features. Also, Radiomics is an emerging area in the evaluation of ICCs. Post treatment studies are required to evaluate the efficacy and the safety of therapies so as the patient surveillance. Conclusions Several morphological and functional data obtained during Imaging studies allow a truthful ICC diagnosis.
Collapse
|