1
|
Khusnun N, Arshad A, Jalil A, Firmansyah L, Hassan N, Nabgan W, Fauzi A, Bahari M, Ya'aini N, Johari A, Saravanan R. An avant-garde of carbon-doped photoanode materials on photo-electrochemical water splitting performance: A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
2
|
Murakami N, Tango Y, Miyake H, Tajima T, Nishina Y, Kurashige W, Negishi Y, Takaguchi Y. SWCNT Photocatalyst for Hydrogen Production from Water upon Photoexcitation of (8, 3) SWCNT at 680-nm Light. Sci Rep 2017; 7:43445. [PMID: 28262708 PMCID: PMC5337977 DOI: 10.1038/srep43445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/23/2017] [Indexed: 11/18/2022] Open
Abstract
Single-walled carbon nanotubes (SWCNTs) are potentially strong optical absorbers with tunable absorption bands depending on their chiral indices (n, m). Their application for solar energy conversion is difficult because of the large binding energy (>100 meV) of electron-hole pairs, known as excitons, produced by optical absorption. Recent development of photovoltaic devices based on SWCNTs as light-absorbing components have shown that the creation of heterojunctions by pairing chirality-controlled SWCNTs with C60 is the key for high power conversion efficiency. In contrast to thin film devices, photocatalytic reactions in a dispersion/solution system triggered by the photoexcitation of SWCNTs have never been reported due to the difficulty of the construction of a well-ordered surface on SWCNTs. Here, we show a clear-cut example of a SWCNT photocatalyst producing H2 from water. Self-organization of a fullerodendron on the SWCNT core affords water-dispersible coaxial nanowires possessing SWCNT/C60 heterojunctions, of which a dendron shell can act as support of a co-catalyst for H2 evolution. Because the band offset between the LUMO levels of (8, 3)SWCNT and C60 satisfactorily exceeds the exciton binding energy to allow efficient exciton dissociation, the (8, 3)SWCNT/fullerodendron coaxial photocatalyst shows H2-evolving activity (QY = 0.015) upon 680-nm illumination, which is E22 absorption of (8, 3) SWCNT.
Collapse
Affiliation(s)
- Noritake Murakami
- Graduate School of Environmental and Life Science; Okayama University; 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuto Tango
- Graduate School of Environmental and Life Science; Okayama University; 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Hideaki Miyake
- Graduate School of Sciences and Technology for Innovation; Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Tomoyuki Tajima
- Graduate School of Environmental and Life Science; Okayama University; 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences; Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Wataru Kurashige
- Department of Applied Chemistry; Faculty of Science Division I; Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry; Faculty of Science Division I; Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yutaka Takaguchi
- Graduate School of Environmental and Life Science; Okayama University; 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
3
|
Stoll T, Castillo CE, Kayanuma M, Sandroni M, Daniel C, Odobel F, Fortage J, Collomb MN. Photo-induced redox catalysis for proton reduction to hydrogen with homogeneous molecular systems using rhodium-based catalysts. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.02.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Gueret R, Castillo CE, Rebarz M, Thomas F, Hargrove AA, Pécaut J, Sliwa M, Fortage J, Collomb MN. Cobalt(III) tetraaza-macrocyclic complexes as efficient catalyst for photoinduced hydrogen production in water: Theoretical investigation of the electronic structure of the reduced species and mechanistic insight. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:82-94. [DOI: 10.1016/j.jphotobiol.2015.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
|
5
|
Purchase RL, de Groot HJM. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield. Interface Focus 2015; 5:20150014. [PMID: 26052428 PMCID: PMC4410567 DOI: 10.1098/rsfs.2015.0014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m−2 d−1 for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum–classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics. We propose that synergy gains by such processes form a basis for further progress towards high efficiency and yield for a global project on artificial photosynthesis. Finally, we look at artificial photosynthesis research in The Netherlands and use this as an example of how an interdisciplinary approach is beneficial to artificial photosynthesis research. We conclude with some of the potential societal consequences of a large-scale roll out of artificial photosynthesis.
Collapse
Affiliation(s)
- R L Purchase
- Biophysical Organic Chemistry/Solid State NMR , Leiden Institute of Chemistry , PO Box 9502, 2300 RA Leiden , The Netherlands
| | - H J M de Groot
- Biophysical Organic Chemistry/Solid State NMR , Leiden Institute of Chemistry , PO Box 9502, 2300 RA Leiden , The Netherlands
| |
Collapse
|
6
|
Massin J, Bräutigam M, Kaeffer N, Queyriaux N, Field MJ, Schacher FH, Popp J, Chavarot-Kerlidou M, Dietzek B, Artero V. Dye-sensitized PS-b-P2VP-templated nickel oxide films for photoelectrochemical applications. Interface Focus 2015; 5:20140083. [PMID: 26052420 DOI: 10.1098/rsfs.2014.0083] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Moving from homogeneous water-splitting photocatalytic systems to photoelectrochemical devices requires the preparation and evaluation of novel p-type transparent conductive photoelectrode substrates. We report here on the sensitization of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) diblock copolymer-templated NiO films with an organic push-pull dye. The potential of these new templated NiO film preparations for photoelectrochemical applications is compared with NiO material templated by F108 triblock copolymers. We conclude that NiO films are promising materials for the construction of dye-sensitized photocathodes to be inserted into photoelectrochemical (PEC) cells. However, a combined effort at the interface between materials science and molecular chemistry, ideally funded within a Global Artificial Photosynthesis Project, is still needed to improve the overall performance of the photoelectrodes and progress towards economically viable PEC devices.
Collapse
Affiliation(s)
- Julien Massin
- Laboratoire de Chimie et Biologie des Métaux , University Grenoble Alpes , CNRS, CEA, 17 rue des martyrs, 38000 Grenoble , France
| | - Maximilian Bräutigam
- Leibniz Institute of Photonic Technology (IPHT) Jena e. V. , Albert-Einstein-Strasse 9, Jena 07745 , Germany ; Institute for Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4, Jena 07743 , Germany
| | - Nicolas Kaeffer
- Laboratoire de Chimie et Biologie des Métaux , University Grenoble Alpes , CNRS, CEA, 17 rue des martyrs, 38000 Grenoble , France
| | - Nicolas Queyriaux
- Laboratoire de Chimie et Biologie des Métaux , University Grenoble Alpes , CNRS, CEA, 17 rue des martyrs, 38000 Grenoble , France
| | - Martin J Field
- Institut de Biologie Structurale Jean-Pierre Ebel , University Grenoble Alpes , CNRS, CEA, 71 rue des martyrs, 38000 Grenoble , France
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry and Jena Center for Soft Matter (JCSM) , Friedrich-Schiller-University Jena , Lessingstrasse 8, Jena 07743 , Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology (IPHT) Jena e. V. , Albert-Einstein-Strasse 9, Jena 07745 , Germany ; Institute for Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4, Jena 07743 , Germany
| | - Murielle Chavarot-Kerlidou
- Laboratoire de Chimie et Biologie des Métaux , University Grenoble Alpes , CNRS, CEA, 17 rue des martyrs, 38000 Grenoble , France
| | - Benjamin Dietzek
- Leibniz Institute of Photonic Technology (IPHT) Jena e. V. , Albert-Einstein-Strasse 9, Jena 07745 , Germany ; Institute for Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4, Jena 07743 , Germany
| | - Vincent Artero
- Laboratoire de Chimie et Biologie des Métaux , University Grenoble Alpes , CNRS, CEA, 17 rue des martyrs, 38000 Grenoble , France
| |
Collapse
|
7
|
Sun K, Shen S, Liang Y, Burrows PE, Mao SS, Wang D. Enabling Silicon for Solar-Fuel Production. Chem Rev 2014; 114:8662-719. [DOI: 10.1021/cr300459q] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Shaohua Shen
- International
Research Center for Renewable Energy, State Key Lab of Multiphase
Flow in Power Engineering, Xi’an Jiaotong University, Xi’an,
Shaanxi 710049, China
- Department
of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Yongqi Liang
- Department
of Chemistry, Chemical Biological Center, Umeå University, Linnaeus
väg, 6 901 87 Umeå, Sweden
| | - Paul E. Burrows
- Department
of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- Samuel Mao Institute of New Energy, Science Hall, 1003 Shangbu Road, Shenzhen, 518031, China
| | - Samuel S. Mao
- Department
of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- Samuel Mao Institute of New Energy, Science Hall, 1003 Shangbu Road, Shenzhen, 518031, China
| | | |
Collapse
|
8
|
Masolo E, Meloni M, Garroni S, Mulas G, Enzo S, Baró MD, Rossinyol E, Rzeszutek A, Herrmann-Geppert I, Pilo M. Mesoporous Titania Powders: The Role of Precursors, Ligand Addition and Calcination Rate on Their Morphology, Crystalline Structure and Photocatalytic Activity. NANOMATERIALS 2014; 4:583-598. [PMID: 28344237 PMCID: PMC5304695 DOI: 10.3390/nano4030583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/16/2022]
Abstract
We evaluate the influence of the use of different titania precursors, calcination rate, and ligand addition on the morphology, texture and phase content of synthesized mesoporous titania samples, parameters which, in turn, can play a key role in titania photocatalytic performances. The powders, obtained through the evaporation-induced self-assembly method, are characterized by means of ex situ X-Ray Powder Diffraction (XRPD) measurements, N2 physisorption isotherms and transmission electron microscopy. The precursors are selected basing on two different approaches: the acid-base pair, using TiCl4 and Ti(OBu)4, and a more classic route with Ti(OiPr)4 and HCl. For both precursors, different specimens were prepared by resorting to different calcination rates and with and without the addition of acetylacetone, that creates coordinated species with lower hydrolysis rates, and with different calcination rates. Each sample was employed as photoanode and tested in the water splitting reaction by recording I-V curves and comparing the results with commercial P25 powders. The complex data framework suggests that a narrow pore size distribution, due to the use of acetylacetone, plays a major role in the photoactivity, leading to a current density value higher than that of P25.
Collapse
Affiliation(s)
- Elisabetta Masolo
- Department of Chemistry and Pharmacy, University di Sassari and INSTM, Via Vienna 2, I-07100 Sassari, Italy.
| | - Manuela Meloni
- Department of Chemistry and Pharmacy, University di Sassari and INSTM, Via Vienna 2, I-07100 Sassari, Italy.
| | - Sebastiano Garroni
- Department of Chemistry and Pharmacy, University di Sassari and INSTM, Via Vienna 2, I-07100 Sassari, Italy.
| | - Gabriele Mulas
- Department of Chemistry and Pharmacy, University di Sassari and INSTM, Via Vienna 2, I-07100 Sassari, Italy.
| | - Stefano Enzo
- Department of Chemistry and Pharmacy, University di Sassari and INSTM, Via Vienna 2, I-07100 Sassari, Italy.
| | - Maria Dolors Baró
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | - Emma Rossinyol
- Servei de Microscòpia, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | - Agnieszka Rzeszutek
- Helmholtz Centre Geesthacht, Institute for Materials Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| | - Iris Herrmann-Geppert
- Helmholtz Centre Geesthacht, Institute for Materials Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
- Helmut-Schmidt-University, Functional Materials, Holstenhofweg 85, 22043 Hamburg, Germany.
| | - Maria Pilo
- Department of Chemistry and Pharmacy, University di Sassari and INSTM, Via Vienna 2, I-07100 Sassari, Italy.
| |
Collapse
|
9
|
Vedha SA, Solomon RV, Venuvanalingam P. Atomic partitioning of M-H2 bonds in [NiFe] hydrogenase--a test case of concurrent binding. Phys Chem Chem Phys 2014; 16:10698-707. [PMID: 24756140 DOI: 10.1039/c4cp00526k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibility of simultaneous addition of η(2)-H2 to both the metals (Ni and Fe) in the active site of the as isolated state of the enzyme (Ni-SI) is examined here by an atom-by-atom electronic energy partitioning based on the QTAIM method. Results show that the 4LS state prefers H2 removal than addition. Destabilization of the atomic basins of the thiolate bridges and decrease of the electrophilicity of the Fe and Ni, resulting in poor back donation to the CO ligand, are the bottlenecks that hamper dihydrogen activation simultaneously. The study helps to understand why such states are seldom accessed in the activation of dihydrogen. Moreover, Ni has been found to be the natural choice for the dihydrogen binding.
Collapse
Affiliation(s)
- Swaminathan Angeline Vedha
- Theoretical & Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli 24, India.
| | | | | |
Collapse
|
10
|
Stoll T, Gennari M, Fortage J, Castillo CE, Rebarz M, Sliwa M, Poizat O, Odobel F, Deronzier A, Collomb MN. An Efficient RuII-RhIII-RuIIPolypyridyl Photocatalyst for Visible-Light-Driven Hydrogen Production in Aqueous Solution. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Stoll T, Gennari M, Fortage J, Castillo CE, Rebarz M, Sliwa M, Poizat O, Odobel F, Deronzier A, Collomb MN. An Efficient RuII-RhIII-RuIIPolypyridyl Photocatalyst for Visible-Light-Driven Hydrogen Production in Aqueous Solution. Angew Chem Int Ed Engl 2014; 53:1654-8. [DOI: 10.1002/anie.201308132] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/22/2013] [Indexed: 11/06/2022]
|
12
|
Smolentsev G, Guda A, Zhang XI, Haldrup K, Andreiadis E, Chavarot-Kerlidou M, Canton SE, Nachtegaal M, Artero V, Sundstrom V. Pump-Flow-Probe X-Ray Absorption Spectroscopy as a Tool for Studying Intermediate States of Photocatalytic Systems. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2013; 117:17367-17375. [PMID: 24443663 PMCID: PMC3892145 DOI: 10.1021/jp4010554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub-mM concentrations. A continuous wave laser is used for the photoexcitation, with the distance between laser and X-ray beams and velocity of liquid flow determining the time delay, while the focusing of both beams and the flow speed define the time resolution. This method is compared with the alternative measurement technique that utilizes a 1 kHz repetition rate laser and multiple X-ray probe pulses. Such an experiment was performed at beamline 11ID-D of the Advanced Photon Source. Advantages, limitations and potential for improvement of the pump-flow-probe setup are discussed by analyzing the photon statistics. Both methods, with Co K-edge probing were applied to the investigation of a cobaloxime-based photo-catalytic reaction. The interplay between optimizing for efficient photoexcitation and time resolution as well as the effect of sample degradation for these two setups are discussed.
Collapse
Affiliation(s)
- Grigory Smolentsev
- Lund University, Lund, 22100, Sweden
- Paul Scherrer Insitute, Villigen, 5232, Switzerland
| | - Alexander Guda
- Research center for nanoscale structure of matter, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - XIaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | | | - Eugen Andreiadis
- Laboratory of Chemistry and Biology of Metals, CEA,CNRS, University Joseph Fourier, Grenoble, France
| | | | | | | | - Vincent Artero
- Laboratory of Chemistry and Biology of Metals, CEA,CNRS, University Joseph Fourier, Grenoble, France
| | | |
Collapse
|
13
|
Watt RK, Petrucci OD, Smith T. Ferritin as a model for developing 3rd generation nano architecture organic/inorganic hybrid photo catalysts for energy conversion. Catal Sci Technol 2013. [DOI: 10.1039/c3cy00536d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Sasada Y, Tajima T, Wada T, Uchida T, Nishi M, Ohkubo T, Takaguchi Y. Photosensitized hydrogen evolution from water using single-walled carbon nanotube/fullerodendron/Pt(ii) coaxial nanohybrids. NEW J CHEM 2013. [DOI: 10.1039/c3nj00790a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Tajima T, Sakata W, Wada T, Tsutsui A, Nishimoto S, Miyake M, Takaguchi Y. Photosensitized hydrogen evolution from water using a single-walled carbon nanotube/fullerodendron/SiO2 coaxial nanohybrid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:5750-5754. [PMID: 22069179 DOI: 10.1002/adma.201103472] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/06/2011] [Indexed: 05/31/2023]
Abstract
A coaxial nanohybrid consisting of a single-walled carbon nanotube (SWCNT), fullerodendron, and SiO(2) shows high-efficiency light-driven hydrogen evolution from water. Upon visible light irradiation, SWCNT/fullerodendron/SiO(2) coaxial nanohybrid shows hydrogen evolution activity in the presence of methyl viologen (MV(2+)), benzyldihydronicotinamide (BNAH), and a colloidal polyvinyl alcohol(PVA)-Pt.
Collapse
Affiliation(s)
- Tomoyuki Tajima
- Graduate School of Environmental Science, Okayama University, Kita-ku, Japan
| | | | | | | | | | | | | |
Collapse
|