1
|
Besnard C, Marie A, Sasidharan S, Harper RA, Shelton RM, Landini G, Korsunsky AM. Synchrotron X-ray Studies of the Structural and Functional Hierarchies in Mineralised Human Dental Enamel: A State-of-the-Art Review. Dent J (Basel) 2023; 11:98. [PMID: 37185477 PMCID: PMC10137518 DOI: 10.3390/dj11040098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Hard dental tissues possess a complex hierarchical structure that is particularly evident in enamel, the most mineralised substance in the human body. Its complex and interlinked organisation at the Ångstrom (crystal lattice), nano-, micro-, and macro-scales is the result of evolutionary optimisation for mechanical and functional performance: hardness and stiffness, fracture toughness, thermal, and chemical resistance. Understanding the physical-chemical-structural relationships at each scale requires the application of appropriately sensitive and resolving probes. Synchrotron X-ray techniques offer the possibility to progress significantly beyond the capabilities of conventional laboratory instruments, i.e., X-ray diffractometers, and electron and atomic force microscopes. The last few decades have witnessed the accumulation of results obtained from X-ray scattering (diffraction), spectroscopy (including polarisation analysis), and imaging (including ptychography and tomography). The current article presents a multi-disciplinary review of nearly 40 years of discoveries and advancements, primarily pertaining to the study of enamel and its demineralisation (caries), but also linked to the investigations of other mineralised tissues such as dentine, bone, etc. The modelling approaches informed by these observations are also overviewed. The strategic aim of the present review was to identify and evaluate prospective avenues for analysing dental tissues and developing treatments and prophylaxis for improved dental health.
Collapse
Affiliation(s)
- Cyril Besnard
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Ali Marie
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Sisini Sasidharan
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Robert A. Harper
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Gabriel Landini
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Alexander M. Korsunsky
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| |
Collapse
|
2
|
The Influence of Suspension Containing Nanodiamonds on the Morphology of the Tooth Tissue Surface in Atomic Force Microscope Observations. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9856851. [PMID: 30519594 PMCID: PMC6241359 DOI: 10.1155/2018/9856851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
Reduced friction and wear of materials after the use of the carbon nanomaterials including nanodiamonds (NDs) have been confirmed by several studies in material engineering. Mechanical cleaning of the tooth surface by brush bristles should leave as little tissue roughened as possible. Higher surface roughness increases the tissue's wear and encourages the redeposition of the bacteria and the colouring agents present in the diet. Therefore, we evaluated the tooth tissues' surface's morphological changes after brushing them with the NDs suspension. Ten human teeth were brushed with the NDs aqueous suspension. The surfaces were observed using an Atomic Force Microscope (AFM). We found that the nature of the tissue surface became milder and smoother. A number of selected profilometric parameters were compared before and after brushing. We observed that brushing with the suspension of NDs resulted in a significant reduction in the enamel and dentine's surface roughness both in the range of the average parameters (Ra; p-0,0019) and in the detailed parameters (Rsk; p-0,048 and Rku; p-0,036). We concluded that the NDs used in the oral hygiene applications have a potentially protective effect on the enamel and the dentine's surfaces.
Collapse
|
3
|
Lignon G, Beres F, Quentric M, Rouzière S, Weil R, De La Dure-Molla M, Naveau A, Kozyraki R, Dessombz A, Berdal A. FAM20A Gene Mutation: Amelogenesis or Ectopic Mineralization? Front Physiol 2017; 8:267. [PMID: 28515694 PMCID: PMC5413562 DOI: 10.3389/fphys.2017.00267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
Background and objective:FAM20A gene mutations result in enamel renal syndrome (ERS) associated with amelogenesis imperfecta (AI), nephrocalcinosis, gingival fibromatosis, and impaired tooth eruption. FAM20A would control the phosphorylation of enamel peptides and thus enamel mineralization. Here, we characterized the structure and chemical composition of unerupted tooth enamel from ERS patients and healthy subjects. Methods: Tooth sections were analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), and X-Ray Fluorescence (XRF). Results: SEM revealed that prisms were restricted to the inner-most enamel zones. The bulk of the mineralized matter covering the crown was formed by layers with varying electron-densities organized into lamellae and micronodules. Tissue porosity progressively increased at the periphery, ending with loose and unfused nanonodules also observed in the adjoining soft tissues. Thus, the enamel layer covering the dentin in all ERS patients (except a limited layer of enamel at the dentino-enamel junction) displayed an ultrastructural globular pattern similar to one observed in ectopic mineralization of soft tissue, notably in the gingiva of Fam20a knockout mice. XRD analysis confirmed the existence of alterations in crystallinity and composition (vs. sound enamel). XRF identified lower levels of calcium and phosphorus in ERS enamel. Finally, EDS confirmed the reduced amount of calcium in ERS enamel, which appeared similar to dentin. Conclusion: This study suggests that, after an initial normal start to amelogenesis, the bulk of the tissue covering coronal dentin would be formed by different mechanisms based on nano- to micro-nodule aggregation. This evocated ectopic mineralization process is known to intervene in several soft tissues in FAM20A gene mutant.
Collapse
Affiliation(s)
- Guilhem Lignon
- Molecular Oral Pathophysiology, Cordeliers Research Center, UMRS 1138 Institut National de la Santé et de la Recherche Médicale, Paris-Descartes, Pierre-et-Marie-Curie, Paris-Diderot UniversitiesParis, France
| | - Fleur Beres
- Molecular Oral Pathophysiology, Cordeliers Research Center, UMRS 1138 Institut National de la Santé et de la Recherche Médicale, Paris-Descartes, Pierre-et-Marie-Curie, Paris-Diderot UniversitiesParis, France
| | - Mickael Quentric
- Molecular Oral Pathophysiology, Cordeliers Research Center, UMRS 1138 Institut National de la Santé et de la Recherche Médicale, Paris-Descartes, Pierre-et-Marie-Curie, Paris-Diderot UniversitiesParis, France
| | - Stephan Rouzière
- Laboratoire de Physique des Solides, Centre National de la Recherche Scientifique, Univ. Paris-Sud, Université Paris-SaclayOrsay Cedex, France
| | - Raphael Weil
- Laboratoire de Physique des Solides, Centre National de la Recherche Scientifique, Univ. Paris-Sud, Université Paris-SaclayOrsay Cedex, France
| | - Muriel De La Dure-Molla
- Reference Center of Rare Buccal and Facial Malformations MAFACE-Rothschild Hospital, APHPParis, France
| | - Adrien Naveau
- Molecular Oral Pathophysiology, Cordeliers Research Center, UMRS 1138 Institut National de la Santé et de la Recherche Médicale, Paris-Descartes, Pierre-et-Marie-Curie, Paris-Diderot UniversitiesParis, France
| | - Renata Kozyraki
- Molecular Oral Pathophysiology, Cordeliers Research Center, UMRS 1138 Institut National de la Santé et de la Recherche Médicale, Paris-Descartes, Pierre-et-Marie-Curie, Paris-Diderot UniversitiesParis, France
| | - Arnaud Dessombz
- Molecular Oral Pathophysiology, Cordeliers Research Center, UMRS 1138 Institut National de la Santé et de la Recherche Médicale, Paris-Descartes, Pierre-et-Marie-Curie, Paris-Diderot UniversitiesParis, France
| | - Ariane Berdal
- Molecular Oral Pathophysiology, Cordeliers Research Center, UMRS 1138 Institut National de la Santé et de la Recherche Médicale, Paris-Descartes, Pierre-et-Marie-Curie, Paris-Diderot UniversitiesParis, France.,Reference Center of Rare Buccal and Facial Malformations MAFACE-Rothschild Hospital, APHPParis, France
| |
Collapse
|
4
|
Berès F, Isaac J, Mouton L, Rouzière S, Berdal A, Simon S, Dessombz A. Comparative Physicochemical Analysis of Pulp Stone and Dentin. J Endod 2016; 42:432-8. [PMID: 26794341 DOI: 10.1016/j.joen.2015.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Odontoblasts are responsible for the synthesis of dentin throughout the life of the tooth. Tooth pulp tissue may undergo a pathologic process of mineralization, resulting in formation of pulp stones. Although the prevalence of pulp stones in dental caries is significant, their development and histopathology are poorly understood, and their precise composition has never been established. The aim of the present study was to investigate the physicochemical properties of the mineralized tissues of teeth to elucidate the pathologic origin of pulp stones. METHODS Areas of carious and healthy dentin of 8 decayed teeth intended for extraction were analyzed and compared. In addition, 6 pulp stones were recovered from 5 teeth requiring root canal treatment. The samples were embedded in resin, sectioned, and observed by scanning electron microscopy and energy-dispersive spectroscopy. X-ray diffraction was performed to identify phases and crystallinity. X-ray fluorescence provided information on the elemental composition of the samples. RESULTS Pulp stones showed heterogeneous structure and chemical composition. X-ray diffraction revealed partially carbonated apatite. X-ray fluorescence identified P, Ca, Cu, Zn, and Sr within dentin and pulp stones. Zn and Cu concentrations were higher in pulp stones and carious dentin compared with healthy dentin. CONCLUSIONS Pulpal cells produce unstructured apatitic mineralizations containing abnormally high Zn and Cu levels.
Collapse
Affiliation(s)
- Fleur Berès
- Univ Paris 07, Univ Paris 06, Univ Paris 05, Equipe Berdal, Unites Mixtes Rech 11, Ctr Rech Cordeliers, INSERM, Lab Physiopathol Orale, Paris, France; UFR d'Odontologie, Paris Descartes University, Paris, France
| | - Juliane Isaac
- Univ Paris 07, Univ Paris 06, Univ Paris 05, Equipe Berdal, Unites Mixtes Rech 11, Ctr Rech Cordeliers, INSERM, Lab Physiopathol Orale, Paris, France; UFR d'Odontologie, Paris Diderot University, Paris, France; Laboratory of Morphogenesis Molecular Genetics, Department of Developmental and Stem Cells Biology, Institut Pasteur, CNRS URA 2578, Paris, France
| | - Ludovic Mouton
- ITODYS, UMR 7086 CNRS, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Stephan Rouzière
- Laboratoire de Physique des Solides, Paris-Sud University, CNRS, UMR 8502, Orsay, France
| | - Ariane Berdal
- Univ Paris 07, Univ Paris 06, Univ Paris 05, Equipe Berdal, Unites Mixtes Rech 11, Ctr Rech Cordeliers, INSERM, Lab Physiopathol Orale, Paris, France; UFR d'Odontologie, Paris Diderot University, Paris, France
| | - Stéphane Simon
- Univ Paris 07, Univ Paris 06, Univ Paris 05, Equipe Berdal, Unites Mixtes Rech 11, Ctr Rech Cordeliers, INSERM, Lab Physiopathol Orale, Paris, France; UFR d'Odontologie, Paris Diderot University, Paris, France; Hopital de la Pitié Salpêtrière, Service d'Odontologie, Paris, France.
| | - Arnaud Dessombz
- Univ Paris 07, Univ Paris 06, Univ Paris 05, Equipe Berdal, Unites Mixtes Rech 11, Ctr Rech Cordeliers, INSERM, Lab Physiopathol Orale, Paris, France; UFR d'Odontologie, Paris Diderot University, Paris, France
| |
Collapse
|