1
|
Yar MS, Henry Ibeogu I, Adnan M, Rehman F, Regmi A, Zhou M, Bilal M, Liu Z, Bako HK, Li C. A novel bio-based time-temperature dependent colorimetric indicator film incorporated with Amaranthus leaf extract for beef freshness tracking. Food Chem 2025; 480:143906. [PMID: 40112708 DOI: 10.1016/j.foodchem.2025.143906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Leveraging amaranthus leaf extract (ALE) as an indicator, polyvinyl alcohol (P), and citric acid (C) as film fabricating materials, an innovative time-temperature indicator (TTI) for beef freshness tracking film, known as PC-ALE was successfully created. The films were characterized in terms of their kinetic modeling, molecular properties, morphological characterization, and physiochemical properties. Arrhenius model was made by utilizing the colorimetric values of TTI films collected from -10 to 35 °C. The correlation coefficient and activation energy of the fitting model were 0.9467, 0.9399, 0.6886, and 123, 57, 95 kJ.mol-1 for ALE containing films with 0.250, 0.375, and 0.500 g, respectively. However, Fourier transform-infrared spectroscopy spectra showed interactions between the molecules. Mechanical properties of the TTI films showed that the addition of ALE enhanced its tensile strength (99.58 to 139.23 MPa) and elongation at break (151.25 to 216.35 %). Due to its optimal colorimetric response, best-fitting reaction kinetic model (R2 = 0.9399), significant time-temperature sensitivity, and balanced mechanical properties, PC-ALE-0.375 films are the most suitable for monitoring beef freshness.
Collapse
Affiliation(s)
- Muhammad Shahar Yar
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095 Nanjing, PR China
| | - Isaiah Henry Ibeogu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095 Nanjing, PR China
| | - Muhammad Adnan
- Department of Energy Engineering, University of the Punjab, Lahore, Pakistan
| | - Faiza Rehman
- Department of Food Science and Technology, Bahauddin Zakariya University, Pakistan
| | - Abisikha Regmi
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095 Nanjing, PR China
| | - Meng Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095 Nanjing, PR China
| | - Muhammad Bilal
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095 Nanjing, PR China
| | - Zheng Liu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095 Nanjing, PR China
| | - Hadiza Kabir Bako
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095 Nanjing, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095 Nanjing, PR China.
| |
Collapse
|
2
|
Bertolo MRV, Pereira TS, dos Santos FV, Facure MHM, dos Santos F, Teodoro KBR, Mercante LA, Correa DS. Citrus wastes as sustainable materials for active and intelligent food packaging: Current advances. Compr Rev Food Sci Food Saf 2025; 24:e70144. [PMID: 40034076 PMCID: PMC11929373 DOI: 10.1111/1541-4337.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Citrus fruits are one of the most popular crops in the world, and around one quarter of them are subjected to industrial processes, aiming at the production of different food products. Citrus processing generates large amounts of waste, including peels, pulp, and seeds. These materials are rich sources of polymers (e.g., pectin, cellulose, hemicellulose, lignin), phenolic compounds, and essential oils. At the same time, the development of food packaging materials using citrus waste is a highly sought strategy for food preservation, and meets the principles of circular economy. This review surveys current advances in the development of active and intelligent food packaging produced using one or more citrus waste components (polymers, phenolics extracts, and essential oils). It highlights the contribution and effects of each of these components on the properties of the developed packaging, as well as emphasizes the current state and challenges for developing citrus-based packaging. Most of the reported investigations employed citrus pectin as a base polymer to produce packaging films through the casting technique. Likewise, most of them focused on developing active materials, and fewer studies have explored the preparation of citrus waste-based intelligent materials. All studies characterized the materials developed, but only a few actually applied them to food matrices. This review is expected to encourage novel investigations that contribute to food preservation and to reduce the environmental impacts caused by discarded citrus byproducts.
Collapse
Affiliation(s)
- Mirella R. V. Bertolo
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Tamires S. Pereira
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and TechnologyFederal University of Sao Carlos (UFSCar)Sao CarlosSPBrazil
| | - Francisco V. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PGrCEM, Department of Materials Engineering, Sao Carlos School of EngineeringUniversity of Sao PauloSao CarlosSPBrazil
| | - Murilo H. M. Facure
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Fabrício dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Luiza A. Mercante
- Institute of ChemistryFederal University of Bahia (UFBA)SalvadorBABrazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and TechnologyFederal University of Sao Carlos (UFSCar)Sao CarlosSPBrazil
- PGrCEM, Department of Materials Engineering, Sao Carlos School of EngineeringUniversity of Sao PauloSao CarlosSPBrazil
| |
Collapse
|
3
|
Prasad Panthi K, Panda C, Mohan Pandey L, Lal Sharma M, Kumar Joshi M. Bio-Interfacial Insights of Nanoparticles Integrated Plant Protein-Based Films for Sustainable Food Packaging Applications. FOOD REVIEWS INTERNATIONAL 2025:1-33. [DOI: 10.1080/87559129.2025.2458563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
4
|
Ibrahim N, Hefnawy MA, Fadlallah SA, Medany SS. Recent advances in electrochemical approaches for detection of nitrite in food samples. Food Chem 2025; 462:140962. [PMID: 39241683 DOI: 10.1016/j.foodchem.2024.140962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Nitrite is a common ingredient in the industry and agriculture; it is everywhere, like water, food, and surroundings. Recently, several approaches have been developed to measure the nitrite levels. So, this review was presented as a summary of many approaches utilized to detect the nitrite. Furthermore, the types of information that may be acquired using these methodologies, including optic and electrical signals, were discussed. In electrical signal methods, electrochemical sensors are usually developed using different materials, including carbon, polymers, oxides, and hydroxides. At the same time, optic signals receiving techniques involve utilizing fluorescence chromatography, absorption, and spectrometry instruments. Furthermore, these methodologies' benefits, drawbacks, and restrictions are examined. Lastly, due to the efficiency and fast means of electrochemical detectors, it was suggested that they can be used for detecting nitrite in food safety. Futuristic advancements in the techniques used for nitrite determination are subsequently outlined.
Collapse
Affiliation(s)
- Nora Ibrahim
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Sahar A Fadlallah
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt; Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
5
|
Mayanti B. Life cycle assessment and waste reduction optimisation of household food waste in Finland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177438. [PMID: 39522780 DOI: 10.1016/j.scitotenv.2024.177438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This study assessed the environmental impacts of national household food waste in Finland, both the edible (EFW) and inedible (IFW) fractions. The analysis covered the upstream stage, where the food was produced and the end-of-life (EoL) stage, which consisted of waste-to-energy (WtE) and anaerobic digestion (AD). Life cycle assessment with a consequential approach was applied, and a CML baseline was selected as the impact assessment method. An optimisation problem using non-dominated sorting genetic algorithm II was then implemented to investigate the optimum reduction strategy of the EFW. The results showed that the food production stage caused detrimental impacts while the EoL generated environmental benefits due to product substitution. The annual climate change impact from upstream and EoL stages was 0.332 M tonne (Mt) CO2 eq and - 0.05 Mt. CO2 eq, respectively. Beef production was an environmental hotspot in the upstream stage that contributed to about 28 % of climate change impact (0.093 Mt. CO2 eq), although the product was only 3 % of EFW. The hotspots in the EoL stage were energy recovery in WtE (-0.03 Mt. CO2 eq) and petrol substitution in AD (-0.04 Mt. CO2 eq). The optimisation minimised the climate change and cost of EFW when a 50 % reduction was achieved. The optimised solutions decreased 59.5 % climate change impact and 54.6 % cost. The research underlined the importance of quantifying the impacts of food waste as the first step for devising targeted interventions which can be implemented throughout the food supply chain.
Collapse
Affiliation(s)
- Bening Mayanti
- School of Technology and Innovations, University of Vaasa, Finland.
| |
Collapse
|
6
|
El Guerraf A, Ziani I, Ben Jadi S, El Bachiri A, Bazzaoui M, Bazzaoui EA, Sher F. Smart conducting polymer innovations for sustainable and safe food packaging technologies. Compr Rev Food Sci Food Saf 2024; 23:e70045. [PMID: 39437198 DOI: 10.1111/1541-4337.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Biofilm formation on food packaging surfaces is a major issue in the industry, as it leads to contamination, reduces shelf life, and poses risks to human health. To mitigate these effects, developing smart coatings that can actively sense and combat microbial growth has become a critical research focus. This study is motivated by the need for intelligent packaging solutions that integrate antimicrobial agents and sensors for real-time contamination detection. It is hypothesized that combining conducting polymers (CPs) with nanomaterials can enhance antimicrobial efficacy while maintaining the mechanical integrity and environmental stability required for food packaging applications. Through the application of numerous technologies like surface modification, CP-nanoparticle integration, and multilayered coating, the antimicrobial performance and sensor capabilities of these materials were analyzed. Case studies showed a 90% inhibition of bacterial growth and a tenfold decrease in viable bacterial counts with AgNPs incorporation, extending strawberries' shelf life by 40% and maintaining fish freshness for an additional 5 days. Moreover, multilayered CP coatings in complex systems have been shown to reduce oxidative spoilage in nuts and dried fruits by up to 85%, while maintaining the quality of leafy greens for up to 3 weeks under suboptimal conditions. Environmental assessments indicated a 30% reduction in carbon footprint when CP coatings were combined with biodegradable polymers, contributing to a more transparent and reliable food supply chain. CP-based films integrated with intelligent sensors exhibit high sensitivity, detecting ammonia concentrations below 500 ppb, and offer significant selectivity for sensing hazardous gases. These findings indicate that CP-based smart coatings markedly enhance food safety and sustainability in packaging applications.
Collapse
Affiliation(s)
- Abdelqader El Guerraf
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences and Technologies, Hassan First University, Settat, Morocco
- International Society of Engineering Science and Technology, Nottingham, UK
| | - Imane Ziani
- International Society of Engineering Science and Technology, Nottingham, UK
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Sana Ben Jadi
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Cité de l'innovation Souss Massa, Agadir, Morocco
| | - Ali El Bachiri
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Mohammed Bazzaoui
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Cité de l'innovation Souss Massa, Agadir, Morocco
| | - El Arbi Bazzaoui
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
7
|
Sabu Mathew S, Jaiswal AK, Jaiswal S. Carrageenan-based sustainable biomaterials for intelligent food packaging: A review. Carbohydr Polym 2024; 342:122267. [PMID: 39048183 DOI: 10.1016/j.carbpol.2024.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 07/27/2024]
Abstract
This article explores the use of carrageenan-based biomaterials in developing sustainable and efficient intelligent food packaging solutions. The research in this field has seen a notable surge, evident from >1000 entries in databases such as Web of Science, PubMed and Science Direct between 2018 and 2023. Various film preparation techniques are explored, including solvent casting, layer-by-layer (LbL) assembly, and electrospinning. Solvent casting is commonly used to incorporate active compounds, while LbL assembly and electrospinning are favored for enhancing mechanical properties and solubility. Carrageenan's film-forming characteristics enable the production of transparent films, ideal for indicator films that facilitate visual inspection for color changes indicative of pH variations, crucial for detecting food spoilage. Surface properties can be modified using additives like plant extracts to regulate moisture interaction, affecting shelf life and food safety. These materials' antioxidant and antimicrobial attributes are highlighted, demonstrating their efficacy against pathogens such as E. coli.
Collapse
Affiliation(s)
- Sneha Sabu Mathew
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Amit K Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| |
Collapse
|
8
|
Stoica M, Bichescu CI, Crețu CM, Dragomir M, Ivan AS, Podaru GM, Stoica D, Stuparu-Crețu M. Review of Bio-Based Biodegradable Polymers: Smart Solutions for Sustainable Food Packaging. Foods 2024; 13:3027. [PMID: 39410063 PMCID: PMC11475208 DOI: 10.3390/foods13193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Conventional passive packaging plays a crucial role in food manufacturing by protecting foods from various external influences. Most packaging materials are polymer-based plastics derived from fossil carbon sources, which are favored for their versatility, aesthetic appeal, and cost-effectiveness. However, the extensive use of these materials poses significant environmental challenges due to their fossil-based origins and persistence in the environment. Global plastic consumption for packaging is expected to nearly triple by 2060, exacerbating the ecological crisis. Moreover, globalization has increased access to a diverse range of foods from around the world, heightening the importance of packaging in providing healthier and safer foods with extended shelf life. In response to these challenges, there is a growing shift to eco-friendly active packaging that not only protects but also preserves the authentic qualities of food, surpassing the roles of conventional passive packaging. This article provides a comprehensive review on the viability, benefits, and challenges of implementing bio-based biodegradable polymers in active food packaging, with the dual goals of environmental sustainability and extending food shelf life.
Collapse
Affiliation(s)
- Maricica Stoica
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Cezar Ionuț Bichescu
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Carmen-Mihaela Crețu
- Faculty of Economic Sciences and Business Administration, “Danubius” University, 3 Galați, 800654 Galati, Romania;
| | - Maricela Dragomir
- Faculty of Physical Education and Sports, “Dunarea de Jos” University of Galati, 63-65 Gării Street, 800003 Galati, Romania;
| | - Angela Stela Ivan
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Geanina Marcela Podaru
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Dimitrie Stoica
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, 59-61 Balcescu Street, 800001 Galati, Romania
| | - Mariana Stuparu-Crețu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Alexandru Ioan Cuza Street, 800010 Galati, Romania;
| |
Collapse
|
9
|
Chandrababu V, Parameswaranpillai J, Gopi JA, Pathak C, Midhun Dominic CD, Feng NL, Krishnasamy S, Muthukumar C, Hameed N, Ganguly S. Progress in food packaging applications of biopolymer-nanometal composites - A comprehensive review. BIOMATERIALS ADVANCES 2024; 162:213921. [PMID: 38870740 DOI: 10.1016/j.bioadv.2024.213921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Eco-friendly nanotechnology-enabled biopolymers are one of the novel concepts of packaging materials to substitute traditional synthetic polymers and their composites. This article succinctly reviews the recent developments of introducing additional functionalities to biopolymers using metal and metal oxide nanoparticles. The functionality of metal nanoparticles such as silver, zinc oxide, titanium dioxide, copper oxide, gold, and magnesium oxide, as food packaging materials were discussed. The addition of nanoparticles in biopolymers improves mechanical properties, gas barrier properties, durability, temperature stability, moisture stability, antimicrobial activity, antioxidant property, and UV absorbance and can prevent the presence of ethylene and oxygen, hence extending the shelf life of foodstuffs. Other than this, the functional activity of these biopolymer composite films helps them to act like smart or intelligent packaging. The selection of metal nanoparticles, particle migration, toxicological effect, and potential future scope in the food packaging industry are also reviewed.
Collapse
Affiliation(s)
- Vibha Chandrababu
- Wimpey Laboratories, Warehouse 1 & 2, Wimpey Building, Plot No: 364-8730, Al Quoz Industrial Area 1, Dubai, United Arab Emirates
| | - Jyotishkumar Parameswaranpillai
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India; AU-Sophisticated Testing and Instrumentation Center, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India.
| | - Jineesh Ayippadath Gopi
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India
| | - Chandni Pathak
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India
| | - C D Midhun Dominic
- Department of Chemistry, Sacred Heart College, Cochin 682013, Kerala, India
| | - Ng Lin Feng
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| | - Senthilkumar Krishnasamy
- Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore 641062, Tamil Nadu, India
| | - Chandrasekar Muthukumar
- SIMCRASH CENTRE, Department of Aerospace Engineering, Hindustan Institute of Technology & Science, Rajiv Gandhi Salai (OMR), Padur, Kelambakkam, Tamil Nadu 603103, India
| | - Nishar Hameed
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, Victoria 3122, Australia
| | - Sayan Ganguly
- Bar-Ilan Institute of Nanotechnology & Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
10
|
Sheibani S, Jafarzadeh S, Qazanfarzadeh Z, Osadee Wijekoon MMJ, Mohd Rozalli NH, Mohammadi Nafchi A. Sustainable strategies for using natural extracts in smart food packaging. Int J Biol Macromol 2024; 267:131537. [PMID: 38608975 DOI: 10.1016/j.ijbiomac.2024.131537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The growing demand for sustainable and eco-friendly food packaging has prompted research on innovative solutions to environmental and consumer health issues. To enhance the properties of smart packaging, the incorporation of bioactive compounds derived from various natural sources has attracted considerable interest because of their functional properties, including antioxidant and antimicrobial effects. However, extracting these compounds from natural sources poses challenges because of their complex chemical structures and low concentrations. Traditional extraction methods are often environmentally harmful, expensive and time-consuming. Thus, green extraction techniques have emerged as promising alternatives, offering sustainable and eco-friendly approaches that minimise the use of hazardous solvents and reduce environmental impact. This review explores cutting-edge research on the green extraction of bioactive compounds and their incorporation into smart packaging systems in the last 10 years. Then, an overview of bioactive compounds, green extraction techniques, integrated techniques, green extraction solvents and their application in smart packaging was provided, and the impact of bioactive compounds incorporated in smart packaging on the shelf lives of food products was explored. Furthermore, it highlights the challenges and opportunities within this field and presents recommendations for future research, aiming to contribute to the advancement of sustainable and efficient smart packaging solutions.
Collapse
Affiliation(s)
- Samira Sheibani
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Zeinab Qazanfarzadeh
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - M M Jeevani Osadee Wijekoon
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
11
|
Sangeetha UK, Sudhakaran N, Parvathy PA, Abraham M, Das S, De S, Sahoo SK. Coconut husk-lignin derived carbon dots incorporated carrageenan based functional film for intelligent food packaging. Int J Biol Macromol 2024; 266:131005. [PMID: 38522705 DOI: 10.1016/j.ijbiomac.2024.131005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024]
Abstract
Carbon dots (CDs) derived from sustainable natural feed-stocks like lignin have gained wide acceptance by virtue of their renewability and promising potential in intelligent sensing applications. The precursor lignin is isolated from agro-biomass waste, coconut husk through sodium hydroxide based extraction process. CDs are synthesised from amine functionalized lignin through solvothermal process and integrated into carrageenan biopolymer matrix (1, 2 and 3 wt%). The composite film with 2 wt% CDs (CARR2CD) showed optimum fluorescent emission intensity, excellent pH dependent fluorescent color change in the food pH range, reasonable tensile strength (46.50 ± 1.32 MPa) and 27 % increase in elongation at break. CDs imparted UV-light blocking properties (70 % UV-light) and enhanced hydrophobicity of the carrageenan matrix. CARR2CD film showed 84 % visible light transparency, 79 % reduction in oxygen transmittance rate (OTR), 81 % reduction in CO2 gas permeability and excellent antioxidant and antibacterial properties (against E. coli and S. aureus). As a practical application, the developed responsive packaging material is used to track pH change associated with milk spoilage via noticeable color change in fluorescent emission of the composite film. Thus, the developed responsive composite film paves a way for use as green and sustainable transparent intelligent food packaging material.
Collapse
Affiliation(s)
- U K Sangeetha
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nandhana Sudhakaran
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - P A Parvathy
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Malini Abraham
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subrata Das
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, Kolkata 700125, India
| | - Sushanta K Sahoo
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Brandelli A. Nanocomposites and their application in antimicrobial packaging. Front Chem 2024; 12:1356304. [PMID: 38469428 PMCID: PMC10925673 DOI: 10.3389/fchem.2024.1356304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
The advances in nanocomposites incorporating bioactive substances have the potential to transform the food packaging sector. Different nanofillers have been incorporated into polymeric matrixes to develop nanocomposite materials with improved mechanical, thermal, optical and barrier properties. Nanoclays, nanosilica, carbon nanotubes, nanocellulose, and chitosan/chitin nanoparticles have been successfully included into polymeric films, resulting in packaging materials with advanced characteristics. Nanostructured antimicrobial films have promising applications as active packaging in the food industry. Nanocomposite films containing antimicrobial substances such as essential oils, bacteriocins, antimicrobial enzymes, or metallic nanoparticles have been developed. These active nanocomposites are useful packaging materials to enhance food safety. Nanocomposites are promising materials for use in food packaging applications as practical and safe substitutes to the traditional packaging plastics.
Collapse
Affiliation(s)
- Adriano Brandelli
- Laboratory of Biochemistry and Applied Microbiology, Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Center of Nanoscience and Nanotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Andre RS, Schneider R, DeLima GR, Fugikawa-Santos L, Correa DS. Wireless Sensor for Meat Freshness Assessment Based on Radio Frequency Communication. ACS Sens 2024; 9:631-637. [PMID: 38323985 PMCID: PMC11264315 DOI: 10.1021/acssensors.3c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Wireless communication technologies, particularly radio frequency (RF), have been widely explored for wearable electronics with secure and user-friendly information transmission. By exploiting the operational principle of chemically actuated resonant devices (CARDs) and the electrical response observed in chemiresistive materials, we propose a simple and hands-on alternative to design and manufacture RF tags that function as CARDs for wireless sensing of meat freshness. Specifically, the RF antennas were meticulously designed and fabricated by lithography onto a flexible substrate with conductive tape, and the RF signal was characterized in terms of amplitude and peak resonant frequency. Subsequently, a single-walled carbon nanotube (SWCNT)/MoS2/In2O3 chemiresistive composite was incorporated into the RF tag to convey it as CARDs. The RF signal was then utilized to establish a correlation between the sensor's electrical response and the RF attenuation signal (reflection coefficient) in the presence of volatile amines and seafood (shrimp) samples. The freshness of the seafood samples was systematically assessed throughout the storage time by utilizing the CARDs, thereby underscoring their effective potential for monitoring food quality. Specifically, the developed wireless tags provide cumulative amine exposure data within the food package, demonstrating a gradual decrease in radio frequency signals. This study illustrates the versatility of RF tags integrated with chemiresistors as a promising pathway toward scalable, affordable, and portable wireless chemical sensors.
Collapse
Affiliation(s)
- Rafaela S. Andre
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
| | - Rodrigo Schneider
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
- PPGQ,
Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905 Sao Carlos, SP, Brazil
| | - Guilherme R. DeLima
- Institute
of Biosciences, Letters and Exact Sciences, São Paulo State University – UNESP, 15054-000 São José
do Rio Preto, SP, Brazil
| | - Lucas Fugikawa-Santos
- Institute
of Biosciences, Letters and Exact Sciences, São Paulo State University – UNESP, 15054-000 São José
do Rio Preto, SP, Brazil
- Institute
of Geosciences and Exact Sciences, São
Paulo State University – UNESP, 13506-900 Rio Claro, SP, Brazil
| | - Daniel S. Correa
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
- PPGQ,
Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905 Sao Carlos, SP, Brazil
| |
Collapse
|
14
|
de Oliveira Filho JG, Bertolo MRV, Fernandes SS, Lemes AC, da Cruz Silva G, Junior SB, de Azeredo HMC, Mattoso LHC, Egea MB. Intelligent and active biodegradable biopolymeric films containing carotenoids. Food Chem 2024; 434:137454. [PMID: 37716153 DOI: 10.1016/j.foodchem.2023.137454] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/30/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
There is growing interest in the use of natural bioactive compounds for the development of new bio-based materials for intelligent and active food packaging applications. Several beneficial effects have been associated with the antioxidant and antimicrobial potentials of carotenoid compounds. In addition, carotenoids are sensitive to pH changes and oxidation reactions, which make them useful bioindicators of food deterioration. This review summarizes the current research on the application of carotenoids as novel intelligent and active biodegradable food packaging materials. Carotenoids recovered from food processing by-products can be used in the development of active food packaging materials due to their antioxidant properties. They help maintain the stability of lipid-rich foods, such as vegetable oils. Additionally, when incorporated into films, carotenoids can monitor food oxidation, providing intelligent functionalities.
Collapse
Affiliation(s)
| | - Mirella Romanelli Vicente Bertolo
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400, CP-780, 13560-970 São Carlos, São Paulo, Brazil.
| | - Sibele Santos Fernandes
- Federal University of Rio Grande, School of Chemistry and Food, Av Italy km 8, Carreiros 96203-900, Rio Grande, Brazil
| | - Ailton Cesar Lemes
- Federal University of Rio de Janeiro (UFRJ), School of Chemistry, Department of Biochemical Engineering, Av. Athos da Silveira Ramos, 149, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Stanislau Bogusz Junior
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400, CP-780, 13560-970 São Carlos, São Paulo, Brazil.
| | | | | | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| |
Collapse
|
15
|
Janik W, Jakubski Ł, Kudła S, Dudek G. Modified polysaccharides for food packaging applications: A review. Int J Biol Macromol 2024; 258:128916. [PMID: 38134991 DOI: 10.1016/j.ijbiomac.2023.128916] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Development of new food packaging materials is crucial to reduce the use of single-use plastics and to limit their destructive impact on the environment. Polysaccharides provide an alternative solution to this problem. This paper summarizes and discusses recent research results on the potential of modifying polysaccharides as materials for film and coating applications. Modifications of polysaccharides significantly affect their properties, as well as their application usability. Although modifications of biopolymers for packaging applications have been widely studied, polysaccharides have attracted little attention despite being a prospective, environmentally friendly, and economically viable packaging alternative. Therefore, this paper discusses approaches to the development of biodegradable, polysaccharide-based food packaging materials and focuses on modifications of four polysaccharides, such as starch, chitosan, sodium alginate and cellulose. In addition, these modifications are presented not only in terms of the selected polysaccharide, but also in terms of specific properties, i.e. hydrophilic, barrier and mechanical properties, of polysaccharides. Such a presentation of results makes it much easier to select the modification method to improve the unsatisfactory properties of the material. Moreover, very often it happens that the applied modification improves one and worsens another property, which is also presented in this review.
Collapse
Affiliation(s)
- Weronika Janik
- Łukasiewicz Research Network - Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; Department of Physical Chemistry and Technology of Polymers, Joint Doctoral School, Silesian University of Technology, Akademicka 2a, 44-100 Gliwice, Poland.
| | - Łukasz Jakubski
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| | - Stanisław Kudła
- Łukasiewicz Research Network - Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland.
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| |
Collapse
|
16
|
Eghbaljoo H, Alizadeh Sani M, Sani IK, Maragheh SM, Sain DK, Jawhar ZH, Pirsa S, Kadi A, Dadkhodayi R, Zhang F, Jafari SM. Development of smart packaging halochromic films embedded with anthocyanin pigments; recent advances. Crit Rev Food Sci Nutr 2023; 65:770-786. [PMID: 39760237 DOI: 10.1080/10408398.2023.2280769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Nowadays, innovative biodegradable packaging based on pH-sensitive natural dyes is being developed. These smart systems quickly inform the food quality to the consumer and monitor fresh foods in real-time. Smart packaging protects food against ambiance risks and simultaneously sends information to users for variations and alterations in the packaging settings. Anthocyanin (ACY), among the natural dyes used as indicators serves as water-soluble flavonoid pigments which made reflection in light in the red-blue range and can detect chemical and microbial alterations in foods based on their pH-susceptible conditions; on the other hand, they have considerable antimicrobial and antioxidant functions that result in the longer shelf life of food products. They also have beneficial properties including anti-cancer and anti-inflammatory functions, avoidance of heart diseases, overweight, and diabetes. Hence, this paper deals with the characteristics of smart packaging films based on anthocyanins, as well as their application in various food industries.
Collapse
Affiliation(s)
- Hadi Eghbaljoo
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Karimi Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Salar Momen Maragheh
- Biotechnology Research Center (BRC), Pateur Institute of Iran, Tehran, Iran
- Department of Biotechnology, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Dinesh Kumar Sain
- Assistant Professor, Department of Chemistry, Faculty of Science, S.P. college sirohi City- sirohi (Rajasthan), India
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, kurdistan Region, Iraq
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Ammar Kadi
- Department of food and biotechnology, South Ural State University, Chelyabinsk, Russia
| | - Rasool Dadkhodayi
- Department of Food Science and Technology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran
| |
Collapse
|
17
|
Wang L, Yang C, Deng X, Peng J, Zhou J, Xia G, Zhou C, Shen Y, Yang H. A pH-sensitive intelligent packaging film harnessing Dioscorea zingiberensis starch and anthocyanin for meat freshness monitoring. Int J Biol Macromol 2023; 245:125485. [PMID: 37348585 DOI: 10.1016/j.ijbiomac.2023.125485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Abundant starch was isolated from Dioscorea zingiberensis C.H. Wright, a novel and underutilized industrial crop resource. In this study, an intelligent packaging film able to indicate food freshness was developed and characterized. D. zingiberensis starch (DZS) was bleached first, and its particle size, total starch content, amylose content, and gelatinization temperature were then measured. Butterfly pea (Clitoria ternatea Linn.) flowers were selected as the source of polyphenols, which rendered the prepared film intelligent and progressively blue-violet. SEM and FT-IR analyses showed the homogeneous dispersion of butterfly pea flower extract (BPE) in the film. The BPE-loaded film showed improved flexibility and resistance to UV and oxidation while maintaining sufficient mechanical strength and physical properties. Moreover, the film underwent a distinguishable color change from red to blue-violet and finally to green-yellow with increasing pH from 2 to 13. Similar color alteration also occurred when the film was exposed to ammonia. When the film was used to monitor the freshness of chicken stored at room temperature, it exhibited an obvious color change, implying its deterioration. Therefore, the newly developed BPE-DZS film, which was produced from readily accessible natural substances, can serve as an intelligent packaging material, indicating food freshness and prolonging shelf life.
Collapse
Affiliation(s)
- Liwei Wang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Chengyu Yang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiaoli Deng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jiangsong Peng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jinwei Zhou
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Guohua Xia
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yuping Shen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Huan Yang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
18
|
Versino F, Ortega F, Monroy Y, Rivero S, López OV, García MA. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023; 12:foods12051057. [PMID: 36900574 PMCID: PMC10000825 DOI: 10.3390/foods12051057] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Food loss and waste occur for many reasons, from crop processing to household leftovers. Even though some waste generation is unavoidable, a considerable amount is due to supply chain inefficiencies and damage during transport and handling. Packaging design and materials innovations represent real opportunities to reduce food waste within the supply chain. Besides, changes in people's lifestyles have increased the demand for high-quality, fresh, minimally processed, and ready-to-eat food products with extended shelf-life, that need to meet strict and constantly renewed food safety regulations. In this regard, accurate monitoring of food quality and spoilage is necessary to diminish both health hazards and food waste. Thus, this work provides an overview of the most recent advances in the investigation and development of food packaging materials and design with the aim to improve food chain sustainability. Enhanced barrier and surface properties as well as active materials for food conservation are reviewed. Likewise, the function, importance, current availability, and future trends of intelligent and smart packaging systems are presented, especially considering biobased sensor development by 3D printing technology. In addition, driving factors affecting fully biobased packaging design and materials development and production are discussed, considering byproducts and waste minimization and revalorization, recyclability, biodegradability, and other possible ends-of-life and their impact on product/package system sustainability.
Collapse
Affiliation(s)
- Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
- Correspondence:
| | - Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Yuliana Monroy
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7, Bahía Blanca 8000, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
19
|
Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C. Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr Polym 2023; 313:120851. [PMID: 37182951 DOI: 10.1016/j.carbpol.2023.120851] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
|
20
|
Tavassoli M, Khezerlou A, Bangar SP, Bakhshizadeh M, Haghi PB, Moghaddam TN, Ehsani A. Functionality developments of Pickering emulsion in food packaging: Principles, applications, and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Andre RS, Mercante LA, Facure MHM, Sanfelice RC, Fugikawa-Santos L, Swager TM, Correa DS. Recent Progress in Amine Gas Sensors for Food Quality Monitoring: Novel Architectures for Sensing Materials and Systems. ACS Sens 2022; 7:2104-2131. [PMID: 35914109 DOI: 10.1021/acssensors.2c00639] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increasing demand for food production has necessitated the development of sensitive and reliable methods of analysis, which allow for the optimization of storage and distribution while ensuring food safety. Methods to quantify and monitor volatile and biogenic amines are key to minimizing the waste of high-protein foods and to enable the safe consumption of fresh products. Novel materials and device designs have allowed the development of portable and reliable sensors that make use of different transduction methods for amine detection and food quality monitoring. Herein, we review the past decade's advances in volatile amine sensors for food quality monitoring. First, the role of volatile and biogenic amines as a food-quality index is presented. Moreover, a comprehensive overview of the distinct amine gas sensors is provided according to the transduction method, operation strategies, and distinct materials (e.g., metal oxide semiconductors, conjugated polymers, carbon nanotubes, graphene and its derivatives, transition metal dichalcogenides, metal organic frameworks, MXenes, quantum dots, and dyes, among others) employed in each case. These include chemoresistive, fluorometric, colorimetric, and microgravimetric sensors. Emphasis is also given to sensor arrays that record the food quality fingerprints and wireless devices that operate as radiofrequency identification (RFID) tags. Finally, challenges and future opportunities on the development of new amine sensors are presented aiming to encourage further research and technological development of reliable, integrated, and remotely accessible devices for food-quality monitoring.
Collapse
Affiliation(s)
- Rafaela S Andre
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, São Paulo, Brazil
| | - Luiza A Mercante
- Institute of Chemistry, Federal University of Bahia (UFBA), 40170-280, Salvador, Bahia, Brazil
| | - Murilo H M Facure
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, São Paulo, Brazil.,PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905, Sao Carlos, São Paulo, Brazil
| | - Rafaela C Sanfelice
- Science and Technology Institute, Federal University of Alfenas, 37715-400, Poços de Caldas, Minas Gerais, Brazil
| | - Lucas Fugikawa-Santos
- São Paulo State University - UNESP, Institute of Geosciences and Exact Sciences, 13506-700, Rio Claro, São Paulo, Brazil
| | - Timothy M Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, São Paulo, Brazil.,PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905, Sao Carlos, São Paulo, Brazil
| |
Collapse
|
22
|
Cova CM, Rincón E, Espinosa E, Serrano L, Zuliani A. Paving the Way for a Green Transition in the Design of Sensors and Biosensors for the Detection of Volatile Organic Compounds (VOCs). BIOSENSORS 2022; 12:51. [PMID: 35200311 PMCID: PMC8869180 DOI: 10.3390/bios12020051] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 05/06/2023]
Abstract
The efficient and selective detection of volatile organic compounds (VOCs) provides key information for various purposes ranging from the toxicological analysis of indoor/outdoor environments to the diagnosis of diseases or to the investigation of biological processes. In the last decade, different sensors and biosensors providing reliable, rapid, and economic responses in the detection of VOCs have been successfully conceived and applied in numerous practical cases; however, the global necessity of a sustainable development, has driven the design of devices for the detection of VOCs to greener methods. In this review, the most recent and innovative VOC sensors and biosensors with sustainable features are presented. The sensors are grouped into three of the main industrial sectors of daily life, including environmental analysis, highly important for toxicity issues, food packaging tools, especially aimed at avoiding the spoilage of meat and fish, and the diagnosis of diseases, crucial for the early detection of relevant pathological conditions such as cancer and diabetes. The research outcomes presented in the review underly the necessity of preparing sensors with higher efficiency, lower detection limits, improved selectivity, and enhanced sustainable characteristics to fully address the sustainable manufacturing of VOC sensors and biosensors.
Collapse
Affiliation(s)
- Camilla Maria Cova
- Department of Chemistry, University of Florence and CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy;
| | - Esther Rincón
- BioPren Group, Inorganic Chemistry and Chemical Engineering Department, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain; (E.R.); (E.E.); (L.S.)
| | - Eduardo Espinosa
- BioPren Group, Inorganic Chemistry and Chemical Engineering Department, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain; (E.R.); (E.E.); (L.S.)
| | - Luis Serrano
- BioPren Group, Inorganic Chemistry and Chemical Engineering Department, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain; (E.R.); (E.E.); (L.S.)
| | - Alessio Zuliani
- Department of Chemistry, University of Florence and CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy;
| |
Collapse
|