1
|
Chen W, Liu W, Liu Z, Wang D, Lan X, Zhan S, Feng X, Liu Y, Ni L. Insight into the mechanism of roasting-induced characteristic aroma formation in Wuyi rock tea using an "in-leaf" model with isotopic labeling. Food Chem 2025; 474:143174. [PMID: 39914349 DOI: 10.1016/j.foodchem.2025.143174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/31/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Wuyi Rock Tea (WRT) undergoes complex chemical transformations during roasting that significantly influence its aroma. This study explores the mechanisms involved in the formation of key aroma compounds, specifically alkylpyrazines and furans. Using HS-SPME-GC-O-MS and aroma dilution analysis, we identified 15 odor-active compounds, including three alkylpyrazines (2,6-diethyl-pyrazine, 2-ethyl-3,5-dimethyl-pyrazine, and 2-methyl-3,5-diethyl-pyrazine) and two furans (furfural and 5-methyl-2-furancarboxaldehyde), with odor-active values exceeding 1. An "in-leaf" labeling approach utilizing isotopically labeled alanine ([15N]-Ala) and glucose ([U13C6]-Glc) was employed to explore the contributions of tea leaf matrix and soluble compounds. Results indicated that the incorporation of two nitrogen atoms from alanine was the predominant pathway for alkylpyrazine formation, while five or six carbon atoms from glucose were primarily responsible for furan formation. Additionally, the insoluble tea leaf matrix contributed 13 % to 32 % of alkylpyrazines and 12 % to 25 % of furans. These findings enhance our understanding of the Maillard reaction's role in WRT's flavor development.
Collapse
Affiliation(s)
- Wensong Chen
- Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Wangxin Liu
- Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Zhibin Liu
- Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, PR China.
| | - Daoliang Wang
- Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Xiaoye Lan
- Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Sijia Zhan
- Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Xiaoxiao Feng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Li Ni
- Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
2
|
Pan Z, Lin J, Luo G, Cheng W, Li Y, Wu C. Unveiling triterpenoid superiority in a newly developed Ganoderma lucidum variety through untargeted metabolomics approach. Front Nutr 2025; 12:1541162. [PMID: 40276533 PMCID: PMC12018227 DOI: 10.3389/fnut.2025.1541162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/12/2025] [Indexed: 04/26/2025] Open
Abstract
The fruiting bodies of Ganoderma lucidum are renowned for their therapeutic properties, primarily due to their triterpenoid content. Variability in G. lucidum strains may influence the composition and abundance of triterpenoids. In this study, we explored the triterpenoid superiority in a newly developed G. lucidum strain (GL_V2) obtained through mutation breeding, and compared it to a widely cultivated strain (GL_V1). GL_V2 exhibited a 1.4-fold increase in total triterpenoid content and higher DPPH radical scavenging activity compared to GL_V1, while polysaccharide levels remained consistent. Using UPLC-Q-Orbitrap-MS and chemometric analyses, we identified 589 metabolites, including 86 triterpenoids. Multivariate statistical analyses revealed clear differences in overall metabolite profiles and triterpenoid compositions between the two strains. OPLS-DA identified 56 triterpenoids as key distinguishing markers with VIP values above 1.0. Notably, GL_V2 exhibited increased levels of seven ganoderic acids, two ganoderiols, three ganolucidic acids, and two ganosporelactones, while GL_V1 showed higher concentrations of six lucidenic acids. These results highlight the superior triterpenoid composition of GL_V2 and its potential for developing more potent G. lucidum-derived products. This study offers valuable insights into varietal differences in triterpenoid profiles and their implications for the cultivation and therapeutic use of G. lucidum. Additionally, the findings of this study suggest that GL_V2 holds significant potential for the development of more effective nutraceutical and pharmaceutical products derived from G. lucidum.
Collapse
Affiliation(s)
- Zhibin Pan
- Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Junhan Lin
- Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Gelian Luo
- Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Weiqing Cheng
- Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Ye Li
- GanoHerb Co. Ltd., Fuzhou, China
| | | |
Collapse
|
3
|
Yao J, Lin X, Qiu Z, Meng X, Chen J, Li A, Tan X, Liu S, Zheng P, Sun B, Kong H. Enhancement of flavor components of oolong tea and dark tea based on graphene heating film. Food Chem X 2025; 27:102433. [PMID: 40241702 PMCID: PMC12002625 DOI: 10.1016/j.fochx.2025.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Reheating is crucial for improving tea quality, and graphene heating film provides a stable, uniform heating surface. This study used graphene heating film to heat oolong and dark tea at medium (M, 65 °C) and high (H, 75 °C) temperatures for 10, 20, and 30 min to assess the impact on flavor compounds. The results showed that the optimal parameters are as follows: the content of ester catechins decreased, the content of non-ester catechins increased, and the concentrations of woody and fruity compounds (Cedrol, Limonene, trans-Isoeugenol, Indole) significantly increased at M10 or H10 in oolong tea. The ester catechin content decreased at H20, the non-ester catechin content increased at M20, and the concentration of Floral compounds (trans-β-ionone) increased at H30 in dark tea. This study explores the potential of graphene heating film in tea processing, offering a theoretical basis for new technology in tea flavor enhancement.
Collapse
Affiliation(s)
- Jiyuan Yao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinyuan Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zihao Qiu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xun Meng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Juan Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ansheng Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xindong Tan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hongqiang Kong
- Shenzhen Xuegu Industrial Co., Ltd, Shenzhen 518000, China
| |
Collapse
|
4
|
Zhu YL, Li WX, Zhang YH, Yan H, Guo LY, Zhang Y, Lv HP, Zhou LH, Lin Z, Wu WL, Zhu Y. Insight into volatile metabolites and key odorants in black teas processed from Jianghua Kucha tea germplasm (Camellia sinensis var. assamica cv. Jianghua). Food Chem 2025; 464:141794. [PMID: 39520884 DOI: 10.1016/j.foodchem.2024.141794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Jianghua Kucha (JHKC) is an ancient tea germplasm, which presents a high value for resource utilization but was less developed in aroma research. In this study, volatile metabolites in fresh leaves and corresponding black teas of JHKC, along with odorants of JHKC black teas were systematically investigated using stir-bar sorptive extraction in combination with gas chromatography-mass spectrometry (GC-MS) and GC-olfactometry/MS (GC-O/MS) technologies. A total of 128 and 135 volatile compounds were identified in fresh leaves and black teas, respectively, along with 13 key differential volatile components derived from fatty acids, pigments, glycoside precursors, and the terpene pathway. An odorant wheel for JHKC black teas was developed based on 29 important odorants determined through a combination of GC-O/MS perception, aroma extract dilution analysis, odor activity value measurement. trans-β-Damascenone, cis-jasmone, and cis-jasmin lactone have been identified as significant contributors to the "sweet" flavor of JHKC black teas.
Collapse
Affiliation(s)
- Ying-Lin Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Wei-Xuan Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, PR China.
| | - Yu-Hui Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Han Yan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, PR China.
| | - Long-Yu Guo
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Yue Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, PR China.
| | - Hai-Peng Lv
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, PR China.
| | - Ling-Hong Zhou
- Chenzhou Institute of Agricultural Sciences, Chenzhou, Hunan, 423000, PR China.
| | - Zhi Lin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, PR China.
| | - Wen-Liang Wu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, PR China; Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, PR China.
| | - Yin Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, PR China.
| |
Collapse
|
5
|
Huang D, Sun C, Wu Y, Zheng F, Yang Q, Zhang X, Dai Q, Wan X, Chen Q. Integrative analysis of the impact of N 2/CO 2 on gabaron oolong tea aroma. Food Res Int 2025; 201:115606. [PMID: 39849765 DOI: 10.1016/j.foodres.2024.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/03/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
This study aimed to investigate the effect of the combination of shaking and various anaerobic treatments on the aroma quality of gabaron oolong tea (GAOT) by chemical and sensory evaluation. The results showed that elevated anaerobic treatment harmed GAOT aroma, emphasizing undesirable attributes such as earthy, fatty, etc. A total of 85 volatiles were identified by gas chromatography-ion mobility spectrometry (GC-IMS), and the relationship between aroma attributes and volatiles were revealed by PLS regression projection and correlation network. Hexanal and octanal at inappropriate concentrations were main causes to the earthy attribute, while nonanal exhibited a potential masking effect against unpleasant attributes. Addition experiments and σ-τ plot analysis verified these associations. Furthermore, observing dynamic patterns of content changes of these three aldehydes in fresh leaves prior to tea thermal processing, providing references for future process optimization. These results provide a new direction for enhancing the quality of GAOT.
Collapse
Affiliation(s)
- Dongzhu Huang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chenyi Sun
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuhan Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fangling Zheng
- Sichuan Vocational and Technical College, Suining 629000, China
| | - Qiqi Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinmeng Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianying Dai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Moreira J, Aryal J, Guidry L, Adhikari A, Chen Y, Sriwattana S, Prinyawiwatkul W. Tea Quality: An Overview of the Analytical Methods and Sensory Analyses Used in the Most Recent Studies. Foods 2024; 13:3580. [PMID: 39593996 PMCID: PMC11593154 DOI: 10.3390/foods13223580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Tea, one of the world's most consumed beverages, has a rich variety of sensory qualities such as appearance, aroma, mouthfeel and flavor. This review paper summarizes the chemical and volatile compositions and sensory qualities of different tea infusions including black, green, oolong, dark, yellow, and white teas based on published data over the past 4 years (between 2021 and 2024), largely focusing on the methodologies. This review highlights the relationships among the different processing methods of tea and their resulting chemical and sensory profiles. Environmental and handling factors during processing, such as fermentation, roasting, and drying are known to play pivotal roles in shaping the unique flavors and aromas of different types of tea, each containing a wide variety of compounds enhancing specific sensory characteristics like umami, astringency, sweetness, and fruity or floral notes, which may correlate with certain groups of chemical compositions. The integration of advanced analytical methods, such as high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS), with traditional sensory analysis techniques was found to be essential in the evaluation of the chemical composition and sensory attributes of teas. Additionally, emerging approaches like near-infrared spectroscopy (NIRS) and electronic sensory methods show potential in modern tea evaluation. The complexity of tea sensory characteristics necessitates the development of combined approaches using both analytical methods and human sensory analysis for a comprehensive and better understanding of tea quality.
Collapse
Affiliation(s)
- Juan Moreira
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Jyoti Aryal
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
| | - Luca Guidry
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (L.G.); (Y.C.)
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
| | - Yan Chen
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (L.G.); (Y.C.)
| | - Sujinda Sriwattana
- Product Development Technology Division, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
| |
Collapse
|
7
|
Zhang J, Mao Y, Xu Y, Feng Z, Wang Y, Chen J, Zhao Y, Cui H, Yin J. Effect of Isolated Scenting Process on the Aroma Quality of Osmanthus Longjing Tea. Foods 2024; 13:2985. [PMID: 39335913 PMCID: PMC11431753 DOI: 10.3390/foods13182985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Scenting is an important process for the formation of aroma quality in floral Longjing tea. There are differences in the aroma quality of osmanthus Longjing teas processed by different scenting processes. The efficient isolated scenting method was employed to process a new product of osmanthus Longjing tea in this study, and this was compared with the traditional scenting method. The volatile compounds of osmanthus Longjing tea were analyzed by a GC-MS instrument. In addition, the effects of scenting time and osmanthus consumption on the aroma quality of Longjing tea were studied. The results indicated that there were 67 kinds of volatile compounds in the osmanthus Longjing tea produced by the isolated scenting process (O-ISP), osmanthus Longjing tea produced by the traditional scenting process (O-TSP), and raw Longjing tea embryo (R), including alcohols, ketones, esters, aldehydes, olefins, acids, furans, and other aroma compounds. The proportions of alcohol compounds, ester compounds, aldehyde compounds, and ketone compounds in O-ISP were higher than in O-TSP and R. When the osmanthus consumption was increased, the relative contents of volatile aroma compounds gradually increased, which included the contents of trans-3,7-linalool oxide II, dehydrolinalool, linalool oxide III (furan type), linalool oxide IV (furan type), 2,6-Dimethyl cyclohexanol, isophytol, geraniol, 1-octene-3-alcohol, cis-2-pentenol, trans-3-hexenol, β-violet alcohol, 1-pentanol, benzyl alcohol, trans-p-2-menthene-1-alcohol, nerol, hexanol, terpineol, 6-epoxy-β-ionone, 4,2-butanone, 2,3-octanedione, methyl stearate, cis-3-hexenyl wasobutyrate, and dihydroanemone lactone. When the scenting time was increased, the relative contents of aroma compounds gradually increased, which included the contents of 2-phenylethanol, trans-3,7-linalool oxide I, trans-3,7-linalool oxide II, dehydrolinalool, isophytol, geraniol, trans-3-hexenol, β-ionol, benzyl alcohol, trans-p-2-menthene-1-ol, nerol, hexanol, terpineol, dihydroβ-ionone, α-ionone, and β-ionone,6,10. The isolated scenting process could achieve better aroma quality in terms of the floral fragrance, refreshing fragrance, and tender fragrance than the traditional scenting process. The isolated scenting process was suitable for processing osmanthus Longjing tea with high aroma quality. This study was hoped to provide a theoretical base for the formation mechanism and control of quality of osmanthus Longjing tea.
Collapse
Affiliation(s)
- Jianyong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Yuxiao Mao
- Hangzhou Academy of Agricultural Science, Hangzhou 310024, China
| | - Yongquan Xu
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Zhihui Feng
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Yuwan Wang
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Jianxin Chen
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Yun Zhao
- Hangzhou Academy of Agricultural Science, Hangzhou 310024, China
| | - Hongchun Cui
- Hangzhou Academy of Agricultural Science, Hangzhou 310024, China
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| |
Collapse
|
8
|
Liu X, Cai N, Cai Z, Li L, Ni H, Chen F. The effect of instant tea on the aroma of duck meat. Food Chem X 2024; 22:101401. [PMID: 38711775 PMCID: PMC11070817 DOI: 10.1016/j.fochx.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Tea products, such as instant tea, have been shown to improve the aroma of meat products. However, the mechanisms by which tea products enhance meat aroma have not been adequately explained. In this study, we analyzed the impact of instant tea on the aroma of duck meat. Our results showed that treatment with instant tea led to increases in floral, baked, and grassy notes while reducing fishy and fatty notes. Several alcohols, aldehydes, ketones, indole and dihydroactinidiolide exhibited significantly increased OAVs. Conversely, certain saturated aldehydes, unsaturated aldehydes and alcohols displayed significantly decreased OAVs. The enhanced floral, baked and grassy notes were attributed to volatile compounds present in instant tea. The reduction in fishy and fatty notes was linked to polyphenols in instant tea interacting with nonanal, undecanal, (E)-2-octenal, (E)-2-nonenal, (E)-2-decenal, and 2,4-decadienal through hydrophobic interactions and electronic effects. This study enhances our understanding of how tea products improve meat aromas.
Collapse
Affiliation(s)
- Xieyuan Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ning Cai
- Xiamen Ocean Vocational College, Xiamen 361021, China
| | - Zhenzhen Cai
- Xiamen Ocean Vocational College, Xiamen 361021, China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
- Xiamen Ocean Vocational College, Xiamen 361021, China
| | - Feng Chen
- Department of Food Science & Human Nutrition, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
9
|
Yuan Y, Peng Z, Jiang X, Zhu Q, Chen R, Wang W, Liu A, Wu C, Ma C, Zhang J. Metabolomics analysis of flavor differences in Shuixian (Camellia sinensis) tea from different production regions and their microbial associations. Food Chem 2024; 443:138542. [PMID: 38281414 DOI: 10.1016/j.foodchem.2024.138542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Shuixian is renowned for its "rock flavor". However, the variations in Shuixian flavor are unclear, as the discussion mainly considers regional factors and overlooks the role of microorganisms. Sensory evaluation of Shuixian from three different regions (Zhengyan, Banyan, and Waishan) revealed that each had unique flavor characteristics: a woody aroma with slight acidity, a strong floral and fruity aroma with good freshness, and a distinct sweet aroma and sourness. Metabolomic analyses have revealed that 2-methylpyrazine was a crucial component of the woody aroma, whereas other metabolites contributed to sweet aroma, freshness, and acidity. Moreover, examinations of the relationship between flavor metabolites and microorganisms revealed that fungi had a more pronounced influence on the metabolite content of Shuixian. The study evaluated the role of fermentation microorganisms in shaping the flavor based on Shuixian flavor analyses, contributing to further research into the "rock flavor", as well as potential microbial interventions.
Collapse
Affiliation(s)
- Yang Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xinyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Qi Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Rongping Chen
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Wenzhen Wang
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Anxing Liu
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Chengjian Wu
- Wuyishan Kaijie Rock Tea City Co., LTD, Nanping 353000, China; Fujian Vocational College of Agriculture, Fuzhou 350119, China
| | | | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
10
|
Zhang Z, Gao L, Tao L, Wu T, Suo J, Hu Y, Yu W, Wu J, Song L. Gas Chromatography-Mass Spectrometry Metabolites and Transcriptome Profiling Reveal Molecular Mechanisms and Differences in Terpene Biosynthesis in Two Torrya grandis Cultivars during Postharvest Ripening. Int J Mol Sci 2024; 25:5581. [PMID: 38891770 PMCID: PMC11171539 DOI: 10.3390/ijms25115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Terpene aroma compounds are key quality attributes of postharvest Torreya grandis nuts, contributing to their commercial value. However, terpene biosynthesis and regulatory networks in different T. grandis cvs. are still poorly understood. Here, chief cvs. 'Xi Fei' and 'Xiangya Fei' were investigated for their differences in terpene biosynthesis and gene expression levels during postharvest ripening using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) and transcriptomic datasets. A total of 28 and 22 aroma compounds were identified in 'Xi Fei' and 'Xiangya Fei', respectively. Interestingly, differences in aroma composition between the two cvs. were mostly attributed to D-limonene and α-pinene levels as key determinants in Torreya nuts' flavor. Further, transcriptome profiling, correlation analysis, and RT-qPCR annotated two novel genes, TgTPS1 in 'Xi Fei' and TgTPS2 in 'Xiangya Fei', involved in terpene biosynthesis. In addition, six transcription factors (TFs) with comparable expression patterns to TgTPS1 and four TFs to TgTPS2 were identified via correlation analysis of a volatile and transcriptome dataset to be involved in terpene biosynthesis. Our study provides novel insight into terpene biosynthesis and its regulation at the molecular level in T. grandis nut and presents a valuable reference for metabolic engineering and aroma improvement in this less explored nut.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Z.); (L.G.); (L.T.); (T.W.); (J.S.); (Y.H.); (W.Y.)
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Z.); (L.G.); (L.T.); (T.W.); (J.S.); (Y.H.); (W.Y.)
| |
Collapse
|
11
|
Lin F, Wu H, Li Z, Huang Y, Lin X, Gao C, Wang Z, Yu W, Sun W. Effect of Mechanical Damage in Green-Making Process on Aroma of Rougui Tea. Foods 2024; 13:1315. [PMID: 38731686 PMCID: PMC11083345 DOI: 10.3390/foods13091315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Rougui Tea (RGT) is a typical Wuyi Rock Tea (WRT) that is favored by consumers for its rich taste and varied aroma. The aroma of RGT is greatly affected by the process of green-making, but its mechanism is not clear. Therefore, in this study, fresh leaves of RGT in spring were picked, and green-making (including shaking and spreading) and spreading (unshaken) were, respectively, applied after sun withering. Then, they were analyzed by GC-TOF-MS, which showed that the abundance of volatile compounds with flowery and fruity aromas, such as nerolidol, jasmine lactone, jasmone, indole, hexyl hexanoate, (E)-3-hexenyl butyrate and 1-hexyl acetate, in green-making leaves, was significantly higher than that in spreading leaves. Transcriptomic and proteomic studies showed that long-term mechanical injury and dehydration could activate the upregulated expression of genes related to the formation pathways of the aroma, but the regulation of protein expression was not completely consistent. Mechanical injury in the process of green-making was more conducive to the positive regulation of the allene oxide synthase (AOS) branch of the α-linolenic acid metabolism pathway, followed by the mevalonate (MVA) pathway of terpenoid backbone biosynthesis, thus promoting the synthesis of jasmonic acid derivatives and sesquiterpene products. Protein interaction analysis revealed that the key proteins of the synthesis pathway of jasmonic acid derivatives were acyl-CoA oxidase (ACX), enoyl-CoA hydratase (MFP2), OPC-8:0 CoA ligase 1 (OPCL1) and so on. This study provides a theoretical basis for the further explanation of the formation mechanism of the aroma substances in WRT during the manufacturing process.
Collapse
Affiliation(s)
- Fuming Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China;
| | - Huini Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| | - Zhaolong Li
- Institute of Animal Husbandry and Veterlnary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China;
| | - Xiying Lin
- Fuding Tea Technology Promotion Station, Ningde 355200, China;
| | - Chenxi Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| | - Wenquan Yu
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| |
Collapse
|
12
|
Wang D, Liu Z, Lan X, Wang C, Chen W, Zhan S, Sun Y, Su W, Lin CC, Liu W, Liu Y, Ni L. Unveiling the aromatic intricacies of Wuyi Rock Tea: A comparative study on sensory attributes and odor-active compounds of Rougui and Shuixian varieties. Food Chem 2024; 435:137470. [PMID: 37774626 DOI: 10.1016/j.foodchem.2023.137470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
The distinctive fragrance of Wuyi Rock Tea (WRT) has garnered high attention in recent years. Herein, we conducted a comprehensive comparison of the sensory attributes and odor-active compounds (OACs) between two quintessential WRTs, namely Rougui (RGT) and Shuixian (SXT). Sensory analysis revealed that RGT exhibited a more pronounced fruity aroma, while SXT had a more complex and intricate sensory profile. By using gas chromatography-olfactory mass spectrometry (GC-O-MS) and two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS) analyses, 26 OACs were identified. Among them, 12 compounds with odor activity values > 1 were recognized as key OACs. Noteworthily, eight compounds, including 6-methyl-5-hepten-2-one, 2-ethyl-3,5-dimethylpyrazine, 2,3-diethyl-5-methylpyrazine, linalool, methyl salicylate, geraniol, (E)-β-ionone, and (E)-nerolidol, were shared by both teas. The unique compounds for RGT were (E)-linalool oxide and (Z)-jasmone, while those for SXT were β-cyclocitral and α-ionone. These findings offer valuable insights for better understanding the flavor differences between the two most important types of WRT.
Collapse
Affiliation(s)
- Daoliang Wang
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhibin Liu
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Xiaoye Lan
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cainan Wang
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China; Fujian Institute of Food Science and Technology, Fuzhou, Fujian 350108, China
| | - Wensong Chen
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Sijia Zhan
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yaqian Sun
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiying Su
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, Province of China
| | - Wei Liu
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Ni
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
13
|
Zhu Y, Chen S, Yin H, Han X, Xu M, Wang W, Zhang Y, Feng X, Liu Y. Classification of oolong tea varieties based on computer vision and convolutional neural networks. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1630-1637. [PMID: 37842747 DOI: 10.1002/jsfa.13049] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND In the contemporary food industry, accurate and rapid differentiation of oolong tea varieties holds paramount importance for traceability and quality control. However, achieving this remains a formidable challenge. This study addresses this lacuna by employing machine learning algorithms - namely support vector machines (SVMs) and convolutional neural networks (CNNs) - alongside computer vision techniques for the automated classification of oolong tea leaves based on visual attributes. RESULTS An array of 13 distinct characteristics, encompassing color and texture, were identified from five unique oolong tea varieties. To fortify the robustness of the predictive models, data augmentation and image cropping methods were employed. A comparative analysis of SVM- and CNN-based models revealed that the ResNet50 model achieved a high Top-1 accuracy rate exceeding 93%. This robust performance substantiates the efficacy of the implemented methodology for rapid and precise oolong tea classification. CONCLUSION The study elucidates that the integration of computer vision with machine learning algorithms constitutes a promising, non-invasive approach for the quick and accurate categorization of oolong tea varieties. The findings have significant ramifications for process monitoring, quality assurance, authenticity validation and adulteration detection within the tea industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Siyuan Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hanzhe Yin
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xihao Han
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Menghan Xu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Xiaoxiao Feng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Yin X, Xiao Y, Wang K, Wu W, Huang J, Liu S, Zhang S. Effect of shaking manners on floral aroma quality and identification of key floral-aroma-active compounds in Hunan black tea. Food Res Int 2023; 174:113515. [PMID: 37986507 DOI: 10.1016/j.foodres.2023.113515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Shaking is a key process effecting the floral aroma of Hunan black tea (HBT). In this study, the aroma composition of HBTs shaken in the early withering stage (ES1, ES1 + LS1, and ES2), shaken in the late withering stage (LS1), and not shaken (NS), and the identification of main floral aroma compounds were analyzed using sensory evaluation combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), and aroma recombination experiments. Sensory evaluation results showed that the floral aroma of HBT shaken in the early withering stage was with high intensity, whereas HBT shaken in the late withering stage had low-intensity floral aroma. GC-MS identified a total number of 81 differential volatile compounds in HBT, including 30 esters, 18 aldehydes, 15 alcohols, 12 terpenes, 4 ketones, and 2 nitrogen-containing compounds. Further screening of important floral aroma differential compounds was performed using sensory-guided, odor activity value (OAV), and GC-O analysis, which identified three critical floral aroma differential compounds. Eventually, absolute quantification analysis and aroma recombination experiments confirmed that indole and methyl jasmonate were the most critical compounds of HBT determining floral aroma intensity. The findings of this study provide valuable guidance for the production of HBT with rich floral aroma attributes.
Collapse
Affiliation(s)
- Xia Yin
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Yangbo Xiao
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Kuofei Wang
- Key Lab of Tea Science of Education Ministry, Hunan Agricultural University, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Wenliang Wu
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Jing Huang
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Shujuan Liu
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Shuguang Zhang
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China.
| |
Collapse
|
15
|
Wang S, Chen X, Wang E, Zhang Y, Tang Y, Wei Y, He W. Comparison of Pivot Profile (PP), Rate-All-That-Apply (RATA), and Pivot-CATA for the sensory profiling of commercial Chinese tea products. Food Res Int 2023; 173:113419. [PMID: 37803757 DOI: 10.1016/j.foodres.2023.113419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 10/08/2023]
Abstract
Rapid sensory profiling methods relying on consumers' perceptions are getting prevalent and broadly utilized by labs and companies to supersede conventional sensory profiling methodologies. Till now, various intensity-based sensory methods such as the newly proposed Pivot-Check-All-That-Apply (CATA) are limitedly developed and compared. In this investigation, Pivot Profile (PP), Rate-All-That-Apply (RATA), and Pivot-CATA methods were applied and validated using tea consumers and commercial Chinese tea products as samples. Data from three approaches were collected, analyzed by correspondence analysis (CA), and used to compare the three methods assessing the panel assessment process, sensory maps, confidence ellipses, and practical applications. Pivot-CATA exhibited a high similarity with RATA (RV = 0.873), and a lower similarity with PP (RV = 0.629). Of the three intensity-related methods, confidence ellipses on the RATA sensory map were the smallest and overlapped the least. However, Pivot-CATA consumed less time in collecting data and its questionnaire was more friendly to participants compared with PP and made the difference in intensity of samples more noticeable to the participants than RATA due to the existence of the pivot sample. Its experimental versatility also allows for a wide range of applications, indicating that the Pivot-CATA is an approach with great promise for routine use.
Collapse
Affiliation(s)
- Shiqin Wang
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
| | - Xinlei Chen
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
| | - Enze Wang
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
| | - Yifang Zhang
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
| | - Yihang Tang
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
| | - Yujia Wei
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
| | - Wenmeng He
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China.
| |
Collapse
|
16
|
Li Y, Li S, Ren J, Li J, Zhao Y, Chen D, Wu Y. Occurrence, spatial distribution, and risk assessment of perchlorate in tea from typical regions in China. Curr Res Food Sci 2023; 7:100606. [PMID: 37822319 PMCID: PMC10563047 DOI: 10.1016/j.crfs.2023.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Perchlorate is a kind of persistent pollutant which occurs widely in the environment. The news of "high content of perchlorate detected in tea exported from China to Europe" has aroused public concerns on perchlorate in tea. However, limited data on its occurrence in tea and health risks for the tea consumers are available. To this end, this study explored the occurrence and spatial distribution of perchlorate based on 747 tea samples collected from the 13 major tea producing regions in China. Perchlorate was detected in 100% of tea samples. The average concentration of perchlorate was 163 μg/kg with the range from 1.2 μg/kg to 3132 μg/kg. From the perspective of spatial distribution, a remarkable difference was observed for perchlorate concentrations in tea samples between different regions (p < 0.0001), and the average concentration of perchlorate from the central China (409 μg/kg) was higher than that from the eastern (90.7 μg/kg) and western (140 μg/kg) regions. However, this study cannot obtain the difference of perchlorate concentrations between different tea categories. Furthermore, a human exposure assessment of perchlorate intake through tea consumption was performed by deterministic and probabilistic risk assessment. The average chronic daily intake (CDI) to perchlorate of Chinese tea consumers was 0.0183 μg/kg bw/day, however, CDI for high tea consumers (99% and 99.9%) was 0.1514-0.4675 μg/kg bw/day. The health risk assessment conducted with a hazard quotient showed that perchlorate exposure through tea consumption was under a safety threshold. Nevertheless, if other dietary exposure pathways were considered, health risks to perchlorate for high tea consumers would be paid attention to.
Collapse
Affiliation(s)
- Yan Li
- Department of Sanitary Technology, West China School of Public Health, Sichuan University, Chengdu, 610041, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Shaohua Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
- Department of Rehabilitation, Wuyi University, Wuyishan, 354300, China
| | - Jun Ren
- Wuhai Inspection and Testing Center, Wuhai, 016000, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Yongning Wu
- Department of Sanitary Technology, West China School of Public Health, Sichuan University, Chengdu, 610041, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| |
Collapse
|
17
|
Gui X, Feng X, Tang M, Li J. Aroma Difference Analysis of Partridge Tea ( Mallotus oblongifolius) with Different Drying Treatments Based on HS-SPME-GC-MS Technique. Molecules 2023; 28:6836. [PMID: 37836679 PMCID: PMC10574705 DOI: 10.3390/molecules28196836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Partridge tea has high medicinal value due to its rich content of terpenoids, phenols, flavonoids, and other related bioactive components. In order to study the best drying method for partridge tea, four treatments, including outdoor sun drying (OD), indoor shade drying (ID), hot-air drying (HAD), and low-temperature freeze-drying (LTD), were performed. The results showed that the OD and HAD treatments favored the retention of the red color of their products, while the ID and LTD treatments were more favorable for the retention of the green color. The HS-SPME-GC-MS results showed that a total of 82 compounds were identified in the four drying treatments of partridge tea, and the most abundant compounds were terpenoids (88.34-89.92%). The HAD-treated tea had the highest terpenoid content (89.92%) and high levels of flavor compounds typical of partridge tea (52.28%). OPLS-DA and PCA showed that α-copaene, β-bourbonene, caryophyllene, α-guaiene, and δ-cadinene could be considered candidate marker compounds for judging the aroma quality of partridge tea with different drying treatments. This study will not only provide a basis for processing and flavor quality control but also for spice and seasoning product development in partridge tea.
Collapse
Affiliation(s)
| | | | | | - Juanling Li
- Hainan Key Laboratory of Biology of Tropical Flowers and Trees Resources, Forestry Institute, Hainan University, Haikou 570228, China; (X.G.); (X.F.); (M.T.)
| |
Collapse
|
18
|
Wang D, Wang C, Su W, Lin CC, Liu W, Liu Y, Ni L, Liu Z. Characterization of the Key Aroma Compounds in Dong Ding Oolong Tea by Application of the Sensomics Approach. Foods 2023; 12:3158. [PMID: 37685091 PMCID: PMC10486682 DOI: 10.3390/foods12173158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The Dong Ding oolong tea (DDT), grown and produced in Taiwan, is widely appreciated for its unique flavor. Despite its popularity, research on the aroma components of DDT remains incomplete. To address this gap, this study employed a sensomics approach to comprehensively characterize the key aroma compounds in DDT. Firstly, sensory evaluation showed that DDT had a prominent caramel aroma. Subsequent analysis using gas chromatography-olfactory mass spectrometry (GC-O-MS) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS) identified a total of 23 aroma-active compounds in DDT. Notably, three pyrazine compounds with roasted notes, namely 2-ethyl-5-methylpyrazine, 2-ethyl-3,5-dimethylpyrazine, and 2,3-diethyl-5-methylpyrazine, along with seven floral- and fruit-smelling compounds, namely 6-methyl-5-hepten-2-one, 3,5-octadien-2-one, linalool, (E)-linalool oxide, geraniol, (Z)-jasmone, and (E)-nerolidol, were identified as the key aroma compounds of DDT. Omission experiments further validated the significant contribution of the three pyrazines to the caramel aroma of DDT. Moreover, the content of 2-ethyl-3,5-dimethylpyrazine, 2,3-diethyl-5-methylpyrazine, (Z)-jasmone, 6-methyl-5-hepten-2-one and 2-ethyl-5-methylpyrazine was found to be higher in the high-grade samples, while (E)-nerolidol, linalool, geraniol and 3,5-octadien-2-one were found to be more abundant in the medium-grade samples. These findings provide valuable information for a better understanding of the flavor attributes of DDT.
Collapse
Affiliation(s)
- Daoliang Wang
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
| | - Cainan Wang
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
- Fujian Institute of Food Science and Technology, Fuzhou 350108, China
| | - Weiying Su
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 300150, China;
| | - Wei Liu
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou 350108, China;
| | - Yuan Liu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Li Ni
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
| | - Zhibin Liu
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
| |
Collapse
|
19
|
Dippong T, Cadar O, Kovacs MH, Dan M, Senila L. Chemical Analysis of Various Tea Samples Concerning Volatile Compounds, Fatty Acids, Minerals and Assessment of Their Thermal Behavior. Foods 2023; 12:3063. [PMID: 37628061 PMCID: PMC10453188 DOI: 10.3390/foods12163063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Tea is the most consumed drink worldwide due to its pleasant taste and various beneficial effects on human health. This paper assesses the physicochemical analysis of different varieties of tea (leaves, flowers, and instant) after prior drying and fine grinding. The thermal decomposition behavior of the tea components shows that the tea has three stages of decomposition, depending on temperature. The first stage was attributed to the volatilization of water, while the second stage involved the degradation of volatiles, polyphenols, and fatty acids. The degradation of cellulose, hemicellulose, and lignin content occurs at the highest temperature of 400 °C in the third stage. A total of 66 volatile compounds, divided into eight classes, were identified in the tea samples. The volatile compounds were classified into nine odor classes: floral, fruity, green, sweet, chemical, woody, citrus, roasted, and alcohol. In all flower and leaf tea samples, monounsaturated (MUFAs), polyunsaturated (PUFAs), and saturated fatty acids (SFAs) were identified. A high content of omega-6 was quantified in acacia, Saint John's Wort, rose, and yarrow, while omega-3 was found in mint, Saint John's Wort, green, blueberry, and lavender samples. The flower and leaf tea samples studied could be a good dietary source of polyphenolic compounds, essential elements. In instant tea samples, a low quantity of polyphenols and major elements were identified. The physicochemical analysis demonstrated that both flower and leaf teas have high-quality properties when compared to instant tea.
Collapse
Affiliation(s)
- Thomas Dippong
- Department of Chemistry and Biology, Technical University of Cluj-Napoca, 76 Victoriei Street, 430122 Baia Mare, Romania;
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (M.H.K.)
| | - Melinda Haydee Kovacs
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (M.H.K.)
| | - Monica Dan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Lacrimioara Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (M.H.K.)
| |
Collapse
|