1
|
Llano S, Zorro-González A, Santander M, Vaillant F, Boulanger R, Ocampo Serna DM, Escobar S. Metabolomic insights into flavour precursor dynamics during fermentation of cacao beans cultivated in diverse climatic production zones in Colombia. Food Res Int 2025; 205:115978. [PMID: 40032472 DOI: 10.1016/j.foodres.2025.115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
The market for flavour superior quality cacao provides significant economic and non-economic benefits to farmers. Flavor precursor metabolites, formed during various post-harvest stages, are crucial for developing superior sensory attributes. However, identifying these metabolites and understanding how climate variations and post-harvest practices influence them remains a challenge. This study investigates how the fermentation methodology applied and climate conditions in different zones of the cacao beans producing region of Arauca - Colombia, influence the metabolomic profile of cacao beans and their flavour precursor metabolites. Untargeted metabolomic analysis was performed by UHPLC-ESI-Orbitrap-MS on cacao beans fermented for 0, 24, 48, 72, 96, and 120 h from 9 production zones. The PLS-DA model highlighted that the metabolomics fingerprint changes through fermentation time. Among the most discriminant metabolites, 18 oligopeptides, sucrose, glucose, fructose, flavanols, and acids were tentatively identified. The chemometric analysis showed that fermentation time has a significant impact on the metabolomic profile of cacao beans, while agroclimatic conditions had a minor influence. Metabolomic analyses defined 96 h as the optimal fermentation time to maximize the amount of aroma precursors. Metabolomic analyses identified 96 h as the optimal fermentation time to maximize the amount of aroma precursors across all 9 cacao production zones evaluated. This study underscores the central role of fermentation in shaping flavor precursors, and contributes to the development of new approaches for cacao processing based on the tracking of biochemical and functional compounds (quality biomarkers).
Collapse
Affiliation(s)
- Sandra Llano
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cacao Laboratory, Centros de Investigación Palmira, Tibaitatá y La Selva - Km 14 Mosquera-Bogotá, Cundinamarca P.O. Box 344300 Colombia
| | - Andrés Zorro-González
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cacao Laboratory, Centros de Investigación Palmira, Tibaitatá y La Selva - Km 14 Mosquera-Bogotá, Cundinamarca P.O. Box 344300 Colombia
| | - Margareth Santander
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cacao Laboratory, Centros de Investigación Palmira, Tibaitatá y La Selva - Km 14 Mosquera-Bogotá, Cundinamarca P.O. Box 344300 Colombia
| | - Fabrice Vaillant
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cacao Laboratory, Centros de Investigación Palmira, Tibaitatá y La Selva - Km 14 Mosquera-Bogotá, Cundinamarca P.O. Box 344300 Colombia; Centre de Coopération Internationale en Recherche Agronomique pour le Développement-CIRAD, UMR QualiSud, 1101 avenue Agropolis, CS 24501, 34093. Montpellier Cedex 5, France; UMR Qualisud, Univ Montpellier, CIRAD, Université d'Avignon, Université de la Réunion, Montpellier SupAgro, Montpellier, France
| | - Renaud Boulanger
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement-CIRAD, UMR QualiSud, 1101 avenue Agropolis, CS 24501, 34093. Montpellier Cedex 5, France; UMR Qualisud, Univ Montpellier, CIRAD, Université d'Avignon, Université de la Réunion, Montpellier SupAgro, Montpellier, France
| | - Diana Marcela Ocampo Serna
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004 Colombia
| | - Sebastián Escobar
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cacao Laboratory, Centros de Investigación Palmira, Tibaitatá y La Selva - Km 14 Mosquera-Bogotá, Cundinamarca P.O. Box 344300 Colombia; Cacao of Excellence Programme, Bioversity International, Italy.
| |
Collapse
|
2
|
de Barros Kobi H, Bragança Alves Fernandes R, Salgado de Senna D, Lorrane Rodrigues Borges L, Cristina Teixeira Ribeiro Vidigal M, Cesar Lima Marrocos P, Viana Freitas V, Sampaio da Silveira de Souza M, Abranches Dias Castro G, Antonio Fernandes S, da Costa Ribeiro Ferraz K, Cesar Stringheta P. Metabolic profile of fatty acids, phenolic compounds, and methylxanthines of cocoa kernels (Theobroma cacao L.) from different cultivars produced in cabruca and full sun farming systems. Food Res Int 2024; 197:115198. [PMID: 39593283 DOI: 10.1016/j.foodres.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The demand for high-quality cocoa beans has increased in line with the growing global demand for chocolate. The chemical composition of cocoa beans can vary according to their origin and growing conditions. In this context, this study evaluated the influence of the cultivar type (CCN51 and PS1319) and the cocoa management system (cabruca and full sun) on the chemical composition of unfermented cocoa kernels. The cultivation system influenced the fatty acid composition of cocoa kernels, with higher values of linoleic acid associated with the full sun system, although higher total lipid contents were obtained in the cabruca system. The cultivar influenced the content of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), total unsaturated fatty acids (UFA) and the saturated/unsaturated ratio (S/U). Lower levels of total phenolic compounds, total anthocyanins and antioxidant properties were found in the full sun system, especially in the PS1319 cultivar. Higher levels of epicatechin and catechin were found in the cocoa kernel of the CCN51 cultivar. Theobromine and caffeine were not influenced by the treatments. Neither the PCA of total lipids and fatty acids, nor the PCA of antioxidant properties, phenolic compounds and methylxanthines indicated an isolated clustering between cultivar and cultivation system. The results showed that the factors under study influenced the chemical composition of the unfermented cocoa kernel. Furthermore, they indicated that the migration from traditional systems, such as cabruca, to full sun systems can reduce the total lipids and phenolic compounds content of the cocoa beans. When planning new plantations, the choice of genetic material should also be carefully considered to produce higher-quality cocoa butter and beans with a higher phenolic compound content.
Collapse
Affiliation(s)
| | | | | | | | | | - Paulo Cesar Lima Marrocos
- Executive Committee of the Cocoa Farming Plan, Ministério da Agricultura, Pecuária e Abastecimento, Brazil
| | | | | | | | | | | | | |
Collapse
|
3
|
Vasquez-Gomez KL, Mori-Mestanza D, Caetano AC, Idrogo-Vasquez G, Culqui-Arce C, Auquiñivin-Silva EA, Castro-Alayo EM, Cruz-Lacerna R, Perez-Ramos HA, Balcázar-Zumaeta CR, Torrejón-Valqui L, Yoplac-Collantes C, Yoplac I, Chavez SG. Exploring chemical properties of essential oils from citrus peels using green solvent. Heliyon 2024; 10:e40088. [PMID: 39559244 PMCID: PMC11570516 DOI: 10.1016/j.heliyon.2024.e40088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
The research explored the chemical characteristics of essential oils (EOs) extracted from the peels of four citrus fruits grown in northeastern Peru (lime, sweet lemon, mandarin and orange). The essential oils were extracted by hydrodistillation using a green solvent, and subsequently, their physicochemical profile, bioactive, heat capacity, and RAMAN mapping were determined; in addition, the volatile composition was determined by gas chromatography (GC-MS), and the main phenols by liquid chromatography (UHPLC). The results evidenced that sweet lemon and mandarin essential oils had higher antioxidant activity (1592.38 and 1216.13 μmol TE/g) and total phenolic content (680.78 and 420.28 mg GAE/g). In contrast, sweet lemon peel essential oil had the highest total flavonoid content (23.18 mg QE/g). D-limonene was the most abundant aromatic compound in orange (>67 %), mandarin (>70 %), and sweet lemon (>72 %) EOs; however, in the lime, it was the lowest (37 %). The most abundant component was the cyclobutane, 1,2-bis(1-methylethylethylenyl)-, trans- (32 %).
Collapse
Affiliation(s)
- Katheryn L. Vasquez-Gomez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Diner Mori-Mestanza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Aline C. Caetano
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Guillermo Idrogo-Vasquez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Carlos Culqui-Arce
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Erick A. Auquiñivin-Silva
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Efraín M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Rosita Cruz-Lacerna
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Harvey A. Perez-Ramos
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Llisela Torrejón-Valqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Cindy Yoplac-Collantes
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Ives Yoplac
- Laboratorio de Nutrición Animal y Bromatología de alimentos, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Segundo G. Chavez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| |
Collapse
|
4
|
González AFR, García GAG, Polanía-Hincapié PA, López LJ, Suárez JC. Fermentation and its effect on the physicochemical and sensory attributes of cocoa beans in the Colombian Amazon. PLoS One 2024; 19:e0306680. [PMID: 39361591 PMCID: PMC11449339 DOI: 10.1371/journal.pone.0306680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/26/2024] [Indexed: 10/05/2024] Open
Abstract
Cocoa (Theobroma cacao L.) is the basic raw material to produce chocolate and other derivatives such as cocoa butter, cocoa powder and cocoa liquor (cocoa paste), which requires a fermentation process that affects its chemical composition and sensory profile. The objective of this study was to monitor the biochemical, physical and sensory changes during fermentation of cocoa beans in cocoa bean processing plants in the department of Caquetá, Colombia. During fermentation, the temperature of the mass and the pH of the pulp and beans were monitored at the different cocoa bean processing plants (Sites ASOACASAN ASA, COMICACAO CMI, COMCAP COC). Also, at two points during fermentation (days 4 and 7), physical properties of the bean were determined, such as variables related to bromatological composition, polyphenolic compounds and antioxidant activity as sensory attributes at the different sites. An increase in dough temperature was found, however the pH of the cotyledon decreased during the fermentation process and the fat and moisture content varied with fermentation time. At the site level, total polyphenol content (TPC), total flavonoids (TF), 1,1-diphenyl-2-picrylhydrazil (DPPH) and ferric reducing antioxidant power (FRAP) contents were statistically different, with COC being different from the other sites. The TPC was higher at the COC site (507 mg gallic acid equivalent GAE/g Cocoa) with respect to the other sites (< 360 mg GAE/g Cocoa). The TF content followed a similar behavior to TPC, with significant differences between sites and differences between fermentation times for ASA. The TF was higher in COC (309.1 mg catechin/g cocoa) with respect to CMI (215.6 mg catechin/g cocoa) and ASA (185.7 mg catechin/g cocoa). Values in DPPH ranged from 5869.3 to 7781.8 μmol Trolox/g cocoa and for the FRAP assay ranged from 369.8 to 606.7 mg ascorbic acid AA/g cocoa among the sites. It was found that the time and management of the fermentation process has a significant impact on the parameters (biochemical, physical and sensory) of cocoa beans. Therefore, it is necessary to standardize the fermentation process to achieve a quality product that meets the needs of the market.
Collapse
Affiliation(s)
| | - Gustavo Adolfo Gutiérrez García
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia, Caquetá, Colombia
- Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Universidad de la Amazonia, Florencia, Caquetá, Colombia
| | - Paola Andrea Polanía-Hincapié
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia, Caquetá, Colombia
- Programa de Maestría en Sistemas Sostenibles de Producción, Facultad de Ciencias Agropecuarias, Universidad de la Amazonia, Florencia, Caquetá, Colombia
| | - Luis Javier López
- Grupo de Investigación en Ciencia y Tecnología de Alimentos-CICTA, Escuela de Ingeniería Química-Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Juan Carlos Suárez
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia, Caquetá, Colombia
- Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Universidad de la Amazonia, Florencia, Caquetá, Colombia
| |
Collapse
|
5
|
Karr T, Guptha LS, Bell K, Thenell J. Oxalates: Dietary Oxalates and Kidney Inflammation: A Literature Review. Integr Med (Encinitas) 2024; 23:36-44. [PMID: 38911445 PMCID: PMC11193404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
This literature review explores the role of dietary oxalate in the development of chronic inflammatory kidney disease in middle-aged and older individuals. The authors pose the following questions: Is oxalate produced endogenously? If food sources contribute to chronic kidney disease and inflammation, what are those foods? What role do cultural food preparation and cooking play in denaturing food oxalates? The concentration of oxalates found within the body at any particular time is not limited to edible plants; normal human metabolic processes of breaking down ascorbic acid may create up to 30 mg of oxalate daily. Research supports urolithiasis as a common urologic disease in industrialized societies. Approximately 80% of kidney stones are composed of calcium oxalate, resulting in hyperoxaluria. Exogenous (originating outside the cell or organism) oxalate sources include ascorbic acid, amino acids, and glyoxal metabolism. Additional research estimates the daily endogenous (produced within the cell or organism) production of oxalate to be 10-25 mg. Suboptimal colonization of oxalate-degrading bacteria and malabsorptive disease are also contributing factors to the development of chronic kidney disease. Oxalate transcellular processes, though poorly understood, rely on multifunctional anion exchangers, and are currently being investigated. A review of research showed that normal human metabolic processes, including the breakdown of ascorbic acid, account for 35-55% of circulating oxalates and can create ≤30 mg of circulating serum oxalate daily. Glyoxylic acid accounts for 50-70% of circulating urinary oxalate in compromised individuals with liver glycation, bacterial insufficiencies, malabsorption, and anion exchange challenges. For persons with a family history of kidney stones, consumption of foods high in oxalates may be consumed in moderation, provided there is adequate calcium intake in the diet to decrease the absorption of oxalates from the meal ingested.
Collapse
Affiliation(s)
- Tammera Karr
- Pacific College of Health and Science, the National Association of Nutrition Professionals
| | | | - Kathleen Bell
- Oregon Holistic Nurses Association and American Holistic Nurses Association
| | | |
Collapse
|
6
|
Abla M, Cai Y, Gao L, Wu J, Yang L. Changes in the antioxidant and anti-inflammatory activities of Rosa rugosa 'Mohong' during fermentation. Heliyon 2024; 10:e25982. [PMID: 38434381 PMCID: PMC10904242 DOI: 10.1016/j.heliyon.2024.e25982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Fermented rose petals are a traditional delicacy of the Dali Bai community in Yunnan, China. Fermentation enhances the quality and nutritional value of roses, as well as their efficacy, by increasing the levels of phenolic compounds. This study aimed to investigate the significant variations in four active compounds throughout the traditional fermentation process. Four compounds in Rosa rugosa 'Mohong' were examined, and significant variations among polyphenols and antioxidant and anti-inflammatory activities were observed. These variations were studied during fermentation by Saccharomyces rouxii at varying temperatures and durations. Moreover, the results showed that gallic acid and syringic acid content significantly increased (P < 0.05) with a rise in temperature from 20°C-35 °C during fermentation. Simultaneously, rutin and quercetin levels significantly decreased (P < 0.05) at all four temperatures throughout the five periods. The antioxidant and anti-inflammatory activities of fermented R. rugosa 'Mohong' methanol extracts were dose-dependent. Our results provide valuable insights into optimizing the processing scale and quality control of fermented rose products.
Collapse
Affiliation(s)
- Merhaba Abla
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yueyue Cai
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650504, Yunnan, China
| | - Lu Gao
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650504, Yunnan, China
| | - Jingsong Wu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lixin Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650504, Yunnan, China
- Center for Biodiversity and Indigenous Knowledge, Kunming, 650034, Yunnan, China
| |
Collapse
|
7
|
Sentellas S, Saurina J. Authentication of Cocoa Products Based on Profiling and Fingerprinting Approaches: Assessment of Geographical, Varietal, Agricultural and Processing Features. Foods 2023; 12:3120. [PMID: 37628119 PMCID: PMC10453789 DOI: 10.3390/foods12163120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Cocoa and its derivative products, especially chocolate, are highly appreciated by consumers for their exceptional organoleptic qualities, thus being often considered delicacies. They are also regarded as superfoods due to their nutritional and health properties. Cocoa is susceptible to adulteration to obtain illicit economic benefits, so strategies capable of authenticating its attributes are needed. Features such as cocoa variety, origin, fair trade, and organic production are increasingly important in our society, so they need to be guaranteed. Most of the methods dealing with food authentication rely on profiling and fingerprinting approaches. The compositional profiles of natural components -such as polyphenols, biogenic amines, amino acids, volatile organic compounds, and fatty acids- are the source of information to address these issues. As for fingerprinting, analytical techniques, such as chromatography, infrared, Raman, and mass spectrometry, generate rich fingerprints containing dozens of features to be used for discrimination purposes. In the two cases, the data generated are complex, so chemometric methods are usually applied to extract the underlying information. In this review, we present the state of the art of cocoa and chocolate authentication, highlighting the pros and cons of the different approaches. Besides, the relevance of the proposed methods in quality control and the novel trends for sample analysis are also discussed.
Collapse
Affiliation(s)
- Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain;
- Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), 08921 Santa Coloma de Gramenet, Spain
- Serra Húnter Fellow Programme, Generalitat de Catalunya, Via Laietana 2, 08003 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain;
- Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
8
|
Guzmán-Armenteros TM, Ruales J, Villacís-Chiriboga J, Guerra LS. Experimental Prototype of Electromagnetic Emissions for Biotechnological Research: Monitoring Cocoa Bean Fermentation Parameters. Foods 2023; 12:2539. [PMID: 37444278 DOI: 10.3390/foods12132539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
A Helmholtz-type electromagnetic emission device, which uses an oscillating magnetic field (OMF), with potential applications in biotechnological research, was built and validated. The coils were connected to an alternating current (AC) generator to generate a 0.5 to 110 mT field at their center. OMF measurements were performed with a Hall effect sensor with a digital signal connection (Arduino nano) and data output to a PC using LabVIEW v2017SP1 software. The fermentation process of the cocoa bean variety CCN 51, exposed to four levels of OMF density for 60 min (0, 5, 40, and 80 mT/60 min), was analyzed. Different variables of the grain fermentation process were evaluated over six days. The ANOVA test probed the device's linearity, accuracy, precision, repeatability, reliability, and robustness. Moreover, CCN 51 cocoa beans' EMF-exposure effect was evaluated under different OMF densities for 60 min. The results show the validity of the equipment under working conditions and the impact of EMF (electromagnetic fields) on the yield, deformation, and pH of cocoa beans. Thus, we concluded that the operation of the prototype is valid for use in biotechnological studies.
Collapse
Affiliation(s)
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito P.O. Box 17-01-2759, Ecuador
| | - José Villacís-Chiriboga
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito P.O. Box 17-01-2759, Ecuador
| | - Luis Santiago Guerra
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito P.O. Box 17-12-759, Ecuador
| |
Collapse
|