1
|
Yang Y, Yang W, Zhang R, Wang Y. Peripheral Mechanism of Cancer-Induced Bone Pain. Neurosci Bull 2024; 40:815-830. [PMID: 37798428 PMCID: PMC11178734 DOI: 10.1007/s12264-023-01126-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 10/07/2023] Open
Abstract
Cancer-induced bone pain (CIBP) is a type of ongoing or breakthrough pain caused by a primary bone tumor or bone metastasis. CIBP constitutes a specific pain state with distinct characteristics; however, it shares similarities with inflammatory and neuropathic pain. At present, although various therapies have been developed for this condition, complete relief from CIBP in patients with cancer is yet to be achieved. Hence, it is urgent to study the mechanism underlying CIBP to develop efficient analgesic drugs. Herein, we focused on the peripheral mechanism associated with the initiation of CIBP, which involves tissue injury in the bone and changes in the tumor microenvironment (TME) and dorsal root ganglion. The nerve-cancer and cancer-immunocyte cross-talk in the TME creates circumstances that promote tumor growth and metastasis, ultimately leading to CIBP. The peripheral mechanism of CIBP and current treatments as well as potential therapeutic targets are discussed in this review.
Collapse
Affiliation(s)
- Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Zhongshan-Fudan Joint Innovation Center, Zhongshan, 528437, China.
| |
Collapse
|
2
|
Li Y, Zheng G, Tang Y, Chen Y, Yang M, Zheng Q, Bao Y. Naringenin alleviates bone cancer pain via NF-κB/uPA/PAR2 pathway in mice. J Orthop Surg (Hong Kong) 2024; 32:10225536241266671. [PMID: 39110834 DOI: 10.1177/10225536241266671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
PURPOSE This investigation aims to explore the protective role of Naringenin (Nar) in bone cancer pain (BCP) via TNF-α-mediated NF-κB/uPA/PAR2 pathway. METHODS BCP model was manipulated by the injection of LL2 cells into femur of mice. The levels of TNF-α and uPA in bone tissue and serum were studied by ELISA. The expressions of PAR2, PKC-γ, PKA and TRPV1 were determined by qPCR and western blot. Levels of p-IKKβ, IKKβ, p-p65, p65 were determined by western blot. Levels of p-p65 and uPA in bone tissue were studied by immunohistochemistry. Behavior tests in this investigation included paw withdrawal latency (PWL) and the paw withdrawal threshold (PWT). Radiological analysis and micro-CT were used to study bone structure. The lesions of bone tissue were determined by HE staining. The Dorsal root ganglia (DRG) isolated from mice were used to determine the level of PAR2 pathway. RESULTS Naringenin improved the BCP-induced bone damage based on the increases of BV/TV, Conn. D, BMD and BMC and the decrease of bone destruction score. Naringenin repressed the reductions of PWT and PWL in BCP mice. Naringenin decreased the levels of PAR2, PKC-γ, PKA and TRPV1 of DRG and reduced the levels of p-IKKβ, p-p65, and uPA in serum and bone tissue in BCP. Importantly, naringenin suppressed the enhancement of TNF-α in serum and bone tissue in BCP mice. CONCLUSION Naringenin alleviated pain sensitization and bone damage of mice with BCP via TNF-α-mediated NF-κB/uPA/PAR2 pathway. We demonstrated a novel pathway for anti-BCP treatment with naringenin.
Collapse
Affiliation(s)
- Yaoyuan Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiting Tang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yupeng Chen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingzhu Yang
- Department of Hematology and Oncology, Qinghai Provincial Hospital of Traditional Chinese Medicine, Xining, China
| | - Qiuhui Zheng
- Department of Hematology and Oncology, Qinghai Provincial Hospital of Traditional Chinese Medicine, Xining, China
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Xu ZH, Niu Z, Liu Y, Liu PL, Lin XL, Zhang L, Chen L, Song Y, Sun R, Zhang HL. TET1-TRPV4 Signaling Contributes to Bone Cancer Pain in Rats. Brain Sci 2023; 13:brainsci13040644. [PMID: 37190609 DOI: 10.3390/brainsci13040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
Bone cancer pain (BCP) is excruciating for cancer patients, with limited clinical treatment options and significant side effects, due to the complex and unclear pathogenesis of bone cancer pain. Peripheral sensitization in dorsal root ganglion (DRG) neurons is a recognized cellular mechanism for bone cancer pain. The pathological mechanism of chronic pain is increasingly being affected by epigenetic mechanisms. In this study, we unbiasedly showed that the DNA hydroxymethylase ten-eleven translocation 1 (TET1) expression was significantly increased in the L4-6 DRG of BCP rats and ten-eleven translocation 2 (TET2) expression did not change significantly. Notably, TET1 inhibition by intrathecal injection of Bobcat339 (a TET1 inhibitor) effectively relieved mechanical hyperalgesia in BCP rats. Peripheral sensitization in chronic pain relies on the activation and overexpression of ion channels on neurons. Here, we demonstrated that TRPV4, one of the transient receptor potential ion channel family members, was significantly elevated in the L4-6 DRG of BCP rats. In addition, TRPV4 inhibition by intrathecal injection of HC067047 (a TRPV4 inhibitor) also significantly attenuated mechanical hyperalgesia in BCP rats. Interestingly, we found that TET1 inhibition downregulated TRPV4 expression in the L4-6 DRG of BCP rats. As a result, these findings suggested that TET1 may contribute to bone cancer pain by upregulating TRPV4 expression in the L4-6 DRG of BCP rats and that TET1 or TRPV4 may become therapeutic targets for bone cancer pain.
Collapse
Affiliation(s)
- Zhen-Hua Xu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
- Department of Anesthesiology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Zheng Niu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
- Department of Anesthesiology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Yun Liu
- Department of Anesthesiology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Pei-Lin Liu
- Department of Anesthesiology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Xiao-Long Lin
- Department of Anesthesiology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Ling Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Long Chen
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Yu Song
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Ren Sun
- Department of Anesthesiology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Hai-Long Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Jing D, Zhao Q, Zhao Y, Lu X, Feng Y, Zhao B, Zhao X. Management of pain in patients with bone metastases. Front Oncol 2023; 13:1156618. [PMID: 37007073 PMCID: PMC10063159 DOI: 10.3389/fonc.2023.1156618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Cancer-induced bone pain (CIBP) has a considerable impact on patients’ quality of life as well as physical and mental health. At present, patients with CIBP are managed according to the three-step analgesic therapy algorithm proposed by the World Health Organization. Opioids are commonly used as the first-line treatment for moderate-to-severe cancer pain but are limited due to addiction, nausea, vomiting and other gastrointestinal side effects. Moreover, opioids have a limited analgesic effect in some patients. In order to optimize the management of CIBP, we must first identify the underlying mechanisms. In some patients, surgery, or surgery combined with radiotherapy or radiofrequency ablation is the first step in the management of CIBP. Various clinical studies have shown that anti-nerve growth factor (NGF) antibodies, bisphosphonates, or RANKL inhibitors can reduce the incidence and improve the management of cancer pain. Herein, we review the mechanisms of cancer pain and potential therapeutic strategies to provide insights for optimizing the management of CIBP.
Collapse
Affiliation(s)
- Doudou Jing
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Zhao
- Department of Endocrine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yibo Zhao
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiangdong Lu
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Feng
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Zhao
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Bin Zhao, ; Xiaofeng Zhao,
| | - Xiaofeng Zhao
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Bin Zhao, ; Xiaofeng Zhao,
| |
Collapse
|
5
|
Ai-Tong-An-Gao-Ji and Fisetin Inhibit Tumor Cell Growth in Rat CIBP Models by Inhibiting the AKT/HIF-1 α Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:1459636. [PMID: 35222641 PMCID: PMC8866002 DOI: 10.1155/2022/1459636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/29/2021] [Accepted: 01/12/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Ai-Tong-An-Gao-Ji (ATAGJ) has been extensively applied for acute bone cancer pain treatment with a satisfactory efficacy, while the specific mechanisms remain unclear and require further investigation. METHODS Overlapped genes of ATAGJ and CIBP obtained from SwissTargetPrediction website and GeneCards database were presented as a Venn diagram. A network diagram of drug-component-target was further established using the Cytoscape 3.6.0 software. The effect of fisetin on Walker 256 cell proliferation was observed by clone formation assay and EDU assay, and the interaction between fisetin and AKT was revealed using the immunoprecipitation assay. Effects of fisetin on AKT/HIF-1α signaling pathway in Walker 256 cells were ultimately detected using Western blot and qPCR assays. RESULTS The key component fisetin and core target gene AKT were sorted out using the drug-component-target network with a binding energy between fisetin and AKT less than -5 kcal/mol. Clone formation assay and EDU assay showed that fisetin substantially suppressed the proliferation of Walker 256 cells. Immunoprecipitation assay results revealed that the combination of fisetin and AKT decreased the level of AKT/HIF-1α signaling pathway of Walker 256 cells. CONCLUSIONS The fisetin of ATAGJ can markedly suppress Walker 256 cells, and the mechanisms may be intimately associated with the combination of fisetin and AKT. Furthermore, fisetin decreased the level of p-AKT and inhibited the expression of the AKT/HIF-1α signaling pathway.
Collapse
|
6
|
Kiguchi N, Ko MC. Potential therapeutic targets for the treatment of opioid abuse and pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 93:335-371. [PMID: 35341570 PMCID: PMC10948018 DOI: 10.1016/bs.apha.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although μ-opioid peptide (MOP) receptor agonists are effective analgesics available in clinical settings, their serious adverse effects put limits on their use. The marked increase in abuse and misuse of prescription opioids for pain relief and opioid overdose mortality in the past decade has seriously impacted society. Therefore, safe analgesics that produce potent analgesic effects without causing MOP receptor-related adverse effects are needed. This review highlights the potential therapeutic targets for the treatment of opioid abuse and pain based on available evidence generated through preclinical studies and clinical trials. To ameliorate the abuse-related effects of opioids, orexin-1 receptor antagonists and mixed nociceptin/MOP partial agonists have shown promising results in translational aspects of animal models. There are several promising non-opioid targets for selectively inhibiting pain-related responses, including nerve growth factor inhibitors, voltage-gated sodium channel inhibitors, and cannabinoid- and nociceptin-related ligands. We have also discussed several emerging and novel targets. The current medications for opioid abuse are opioid receptor-based ligands. Although neurobiological studies in rodents have discovered several non-opioid targets, there is a translational gap between rodents and primates. Given that the neuroanatomical aspects underlying opioid abuse and pain are different between rodents and primates, it is pivotal to investigate the functional profiles of these non-opioid compounds compared to those of clinically used drugs in non-human primate models before initiating clinical trials. More pharmacological studies of the functional efficacy, selectivity, and tolerability of these newly discovered compounds in non-human primates will accelerate the development of effective medications for opioid abuse and pain.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan.
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
7
|
Ismy J, Emril DR, Rizkidawati. Management of cancer pain with analgetic adjuvant and weak opioid in prostate cancer bone metastases: A case series. Ann Med Surg (Lond) 2020; 60:575-578. [PMID: 33299563 PMCID: PMC7701877 DOI: 10.1016/j.amsu.2020.10.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In cancer patients, cancer pain is the most common cancer complication. About 60-90% of patients with advanced stage cancer experience various levels of pain, and about 30% of patients have been suffering from persistent severe pain. Bones are the most frequent targets of metastases in patients with cancer such as breast, prostate, lung, kidney, and thyroid. In advanced prostate cancer, bone metastasis leads to bone pain, skeletal fracture, and increased mortality. At least 75% of patients with bone metastasis experience bone pain. CASE DESCRIPTION We report three cases of cancer pain, treated with primary cancer from the prostate metastasis to the spine. All three patients had lower back pain that radiated to the left and right limbs, with mixed pain and bone pain, where early hospital admission shows the Numeric Rating Scale (NRS) pain scale 9-10. Treated with administration of adjuvant therapy (Gabapentin) and weak opioids (injections of Tramadol) as well as injections of Metylprednisolone (for 3 days), the patient's pain scale was evaluated, and the average NRS obtained on days 2-4 was 5-6. On day 5-8, treatment continued with Gabapentin and Tramadol injections, and the pain scale (NRS) decreased to 2-3. All patients on the 8-9th day of treatment also received Biphosphonates to reduce pain, bone damage, fracture risk, and blood calcium levels. Patients can be discharged with an oral Gabapentin prescription only. CONCLUSION A pain scale (NRS) reduction of >50% is obtained from the initial pain scale in cancer pain patients treated using a combination of adjuvant therapy and weak opioids.
Collapse
Affiliation(s)
- Jufriady Ismy
- Urology Division, Surgery Department, Faculty of Medicine, Universitas Syiah Kuala, Zainoel Abidin General Hospital, Banda Aceh, Indonesia
| | - Dessy Rakhmawati Emril
- Pain and Headache Division, Neurology Department, Faculty of Medicine, Universitas Syiah Kuala, Zainoel Abidin General Hospital, Banda Aceh, Indonesia
| | - Rizkidawati
- Pain and Headache Division, Neurology Department, Faculty of Medicine, Universitas Syiah Kuala, Zainoel Abidin General Hospital, Banda Aceh, Indonesia
| |
Collapse
|
8
|
The neurotrophic tyrosine kinase receptor 1 (TrkA) is overexpressed in oesophageal squamous cell carcinoma. Pathology 2020; 53:470-477. [PMID: 33143904 DOI: 10.1016/j.pathol.2020.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/31/2023]
Abstract
Nerve growth factor (NGF) and its receptors, the neurotrophic receptor tyrosine kinase 1 (NTRK1/TrkA) and the common neurotrophin receptor (NGFR/p75NTR), are increasingly implicated in cancer progression, but their clinicopathological significance in oesophageal cancer is unclear. In this study, the expression of NGF, NTRK1 and NGFR were analysed by immunohistochemistry in a cohort of 303 oesophageal cancers versus 137 normal adjacent oesophageal tissues. Immunostaining was digitally quantified and compared to clinicopathological parameters. NGF and NGFR staining were found in epithelial cells and at similar levels between oesophageal cancers and normal oesophageal tissue. NGFR staining was slightly increased with grade (p=0.0389). Interestingly, NTRK1 staining was markedly higher in oesophageal squamous cell carcinoma (OR 2.31, 95%CI 1.13-4.38, p<0.0001) and significantly lower in adenocarcinoma (OR 0.50, 95%CI 0.44-0.63, p<0.0001) compared to normal oesophageal tissue. In addition, NTRK1 staining was decreased in grade 2 and grade 3 (OR 0.51, 95%CI 0.21-1.40, p<0.0001) compared to grade 1, suggesting a preferential involvement of this receptor in the more differentiated forms of oesophageal carcinomas. Together, these data point to NTRK1 as a biomarker and a candidate therapeutic target in oesophageal squamous cell carcinoma.
Collapse
|
9
|
Di YZ, Han BS, Di JM, Liu WY, Tang Q. Role of the brain-gut axis in gastrointestinal cancer. World J Clin Cases 2019; 7:1554-1570. [PMID: 31367615 PMCID: PMC6658366 DOI: 10.12998/wjcc.v7.i13.1554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
Several studies have largely focused on the significant role of the nervous and immune systems in the process of tumorigenesis, including tumor growth, proliferation, apoptosis, and metastasis. The brain-gut-axis is a new paradigm in neuroscience, which describes the biochemical signaling between the gastrointestinal (GI) tract and the central nervous system. This axis may play a critical role in the tumorigenesis and development of GI cancers. Mechanistically, the bidirectional signal transmission of the brain-gut-axis is complex and remains to be elucidated. In this article, we review the current findings concerning the relationship between the brain-gut axis and GI cancer cells, focusing on the significant role of the brain-gut axis in the processes of tumor proliferation, invasion, apoptosis, autophagy, and metastasis. It appears that the brain might modulate GI cancer by two pathways: the anatomical nerve pathway and the neuroendocrine route. The simulation and inactivation of the central nervous, sympathetic, and parasympathetic nervous systems, or changes in the innervation of the GI tract might contribute to a higher incidence of GI cancers. In addition, neurotransmitters and neurotrophic factors can produce stimulatory or inhibitory effects in the progression of GI cancers. Insights into these mechanisms may lead to the discovery of potential prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Yang-Zi Di
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Bo-Sheng Han
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 443000, Hubei Province, China
| | - Jun-Mao Di
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Wei-Yan Liu
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Qiang Tang
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|
10
|
Lux S, Lobos N, Lespay-Rebolledo C, Salas-Huenuleo E, Kogan MJ, Flores C, Pinto M, Hernandez A, Pelissier T, Constandil L. The antinociceptive effect of resveratrol in bone cancer pain is inhibited by the Silent Information Regulator 1 inhibitor selisistat. J Pharm Pharmacol 2018; 71:816-825. [DOI: 10.1111/jphp.13064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/02/2018] [Indexed: 01/10/2023]
Abstract
Abstract
Objectives
To study the antinociceptive effect of single and repeated doses of resveratrol in a bone cancer pain model, and whether this effect is prevented by the Silent Information Regulator 1 (SIRT1) inhibitor selisistat.
Methods
The femoral intercondylar bone of BALB/c mice was injected with 1 000 000 BJ3Z cancer cells. Bone resorption and tumour mass growth (measured by in vivo X-ray and fluorescence imaging), as well as mechanical nociceptive thresholds (von Frey device) and dynamic functionality (rotarod machine), were evaluated during the following 4 weeks. Acute resveratrol (100 mg/kg i.p.) and/or selisistat (10 mg/kg s.c.) were administered on day 14. Chronic resveratrol (100 mg/kg i.p., daily) and/or selisistat (0.5 μg/h s.c., Alzet pump) were administered between days 14 and 20.
Key findings
Tumour growth gradually incremented until day 31, while mechanical hyperalgesia started on day 3 after cancer cell injection. Acute resveratrol increased the mechanical threshold of pain (peaking at 1.5 h), while the dynamic functionality decreased. Chronic resveratrol produced a sustained antinociceptive effect on mechanical hyperalgesia and improved the loss of dynamic functionality induced by the bone cancer tumour. Selisistat prevented all the effects of resveratrol.
Conclusions
Acute and chronic resveratrol induces antinociceptive effect in the model of metastatic osseous oncological pain, an effect that would be mediated by SIRT1 molecular signalling.
Collapse
Affiliation(s)
- Sebastian Lux
- Department of Biology, Laboratory of Neurobiology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Nicolas Lobos
- Department of Biology, Laboratory of Neurobiology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Carolyne Lespay-Rebolledo
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Edison Salas-Huenuleo
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Marcelo J Kogan
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Christian Flores
- Department of Biology, Laboratory of Neurobiology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Mauricio Pinto
- Department of Biology, Laboratory of Immunology of Reproduction, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Alejandro Hernandez
- Department of Biology, Laboratory of Neurobiology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Teresa Pelissier
- Department of Biology, Laboratory of Neurobiology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis Constandil
- Department of Biology, Laboratory of Neurobiology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| |
Collapse
|
11
|
Targeting neurotrophin signaling in cancer: The renaissance. Pharmacol Res 2018; 135:12-17. [DOI: 10.1016/j.phrs.2018.07.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 01/15/2023]
|
12
|
Shepherd AJ, Mickle AD, Kadunganattil S, Hu H, Mohapatra DP. Parathyroid Hormone-Related Peptide Elicits Peripheral TRPV1-dependent Mechanical Hypersensitivity. Front Cell Neurosci 2018; 12:38. [PMID: 29497363 PMCID: PMC5818411 DOI: 10.3389/fncel.2018.00038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/31/2018] [Indexed: 02/04/2023] Open
Abstract
Bone metastasis in breast, prostate and lung cancers often leads to chronic pain, which is poorly managed by existing analgesics. The neurobiological mechanisms that underlie chronic pain associated with bone-metastasized cancers are not well understood, but sensitization of peripheral nociceptors by tumor microenvironment factors has been demonstrated to be important. Parathyroid hormone-related peptide (PTHrP) is highly expressed in bone-metastasized breast and prostate cancers, and is critical to growth and proliferation of these tumors in the bone tumor microenvironment. Previous studies have suggested that PTHrP could sensitize nociceptive sensory neurons, resulting in peripheral pain hypersensitivity. In this study, we found that PTHrP induces both heat and mechanical hypersensitivity, that are dependent on the pain-transducing transient receptor potential channel family vanilloid, member-1 (TRPV1), but not the mechano-transducing TRPV4 and TRPA1 ion channels. Functional ratiometric Ca2+ imaging and voltage-clamp electrophysiological analysis of cultured mouse DRG neurons show significant potentiation of TRPV1, but not TRPA1 or TRPV4 channel activation by PTHrP. Interestingly, PTHrP exposure led to the slow and sustained activation of TRPV1, in the absence of any exogenous channel agonist, and is dependent on the expression of the type-1 parathyroid hormone receptor (PTH1), as well as on downstream phosphorylation of the channel by protein kinase C (PKC). Accordingly, local administration of specific small-molecule antagonists of TRPV1 to mouse hindpaws after the development of PTHrP-induced mechanical hypersensitivity led to its significant attenuation. Collectively, our findings suggest that PTHrP/PTH1-mediated flow activation of TRPV1 channel contributes at least in part to the development and maintenance of peripheral mechanical pain hypersensitivity, and could therefore constitute a mechanism for nociceptor sensitization in the context of metastatic bone cancer pain.
Collapse
Affiliation(s)
- Andrew J Shepherd
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Aaron D Mickle
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Suraj Kadunganattil
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Hongzhen Hu
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Center for Investigation on Membrane Excitable Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Durga P Mohapatra
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Center for Investigation on Membrane Excitable Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|