1
|
Kotecha R, La Rosa A, Brown PD, Vogelbaum MA, Navarria P, Bodensohn R, Niyazi M, Karschnia P, Minniti G. Multidisciplinary management strategies for recurrent brain metastasis after prior radiotherapy: An overview. Neuro Oncol 2025; 27:597-615. [PMID: 39495010 PMCID: PMC11889725 DOI: 10.1093/neuonc/noae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
As cancer patients with intracranial metastatic disease experience increasingly prolonged survival, the diagnosis and management of recurrent brain metastasis pose significant challenges in clinical practice. Prior to deciding upon a management strategy, it is necessary to ascertain whether patients have recurrent/progressive disease vs adverse radiation effect, classify the recurrence as local or distant in the brain, evaluate the extent of intracranial disease (size, number and location of lesions, and brain metastasis velocity), the status of extracranial disease, and enumerate the interval from the last intracranially directed intervention to disease recurrence. A spectrum of salvage local treatment options includes surgery (resection and laser interstitial thermal therapy [LITT]) with or without adjuvant radiotherapy in the forms of external beam radiotherapy, intraoperative radiotherapy, or brachytherapy. Nonoperative salvage local treatments also range from single fraction and fractionated stereotactic radiosurgery (SRS/FSRS) to whole brain radiation therapy (WBRT). Optimal integration of systemic therapies, preferably with central nervous system (CNS) activity, may also require reinterrogation of brain metastasis tissue to identify actionable molecular alterations specific to intracranial progressive disease. Ultimately, the selection of the appropriate management approach necessitates a sophisticated understanding of patient, tumor, and prior treatment-related factors and is often multimodal; hence, interdisciplinary evaluation for such patients is indispensable.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Department of Translational Medicine, Hebert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Hospital Universitario La Paz, Madrid, Spain
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, Milan, Italy
| | - Raphael Bodensohn
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology, and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
2
|
Ruder AM, Mohamed SA, Hoesl MAU, Neumaier-Probst E, Giordano FA, Schad L, Adlung A. Radiosurgery-induced early changes in peritumoral tissue sodium concentration of brain metastases. PLoS One 2024; 19:e0313199. [PMID: 39495788 PMCID: PMC11534259 DOI: 10.1371/journal.pone.0313199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is an effective therapy for brain metastases. Response is assessed with serial 1H magnetic resonance imaging (MRI). Early markers for response are desirable to allow for individualized treatment adaption. Previous studies indicated that radiotherapy might have impact on tissue sodium concentration. Thus, 23Na MRI could provide early quantification of response to SRS. PURPOSE We investigated whether longitudinal detection of tissue sodium concentration alteration within brain metastases and their peritumoral tissue after SRS with 23Na MRI was feasible. STUDY TYPE Prospective. POPULATION Twelve patients with a total of 14 brain metastases from various primary tumors. ASSESSMENT 23Na MRI scans were acquired from patients 2 days before, 5 days after, and 40 days after SRS. Gross tumor volume (GTV) and healthy-appearing regions were manually segmented on the MPRAGE obtained 2 days before SRS, onto which all 23Na MR images were coregistered. Radiation isodose areas within the peritumoral tissue were calculated with the radiation planning system. Tissue sodium concentration before and after SRS within GTV, peritumoral tissue, and healthy-appearing regions as well as the routine follow-up with serial MRI were evaluated. STATISTICAL TESTS Results were compared using Student's t-test and correlation was evaluated with Pearson's correlation coefficient. RESULTS We found a positive correlation between the tissue sodium concentration within the peritumoral tissue and radiation dosage. Two patients showed local progression and a differing tissue sodium concentration evolution within GTV and the peritumoral tissue compared to mean tissue sodium concentration of the other patients. No significant tissue sodium concentration changes were observed within healthy-appearing regions. CONCLUSION Tissue sodium concentration assessment within brain metastases and peritumoral tissue after SRS with 23Na MRI is feasible and might be able to quantify tissue response to radiation.
Collapse
Affiliation(s)
- Arne Mathias Ruder
- Department of Radiation Oncology, University Medical Centre Mannheim, Mannheim, Germany
| | - Sherif A. Mohamed
- Department of Neuroradiology, University Medical Centre Mannheim, Mannheim, Germany
| | - Michaela A. U. Hoesl
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eva Neumaier-Probst
- Department of Neuroradiology, University Medical Centre Mannheim, Mannheim, Germany
| | - Frank A. Giordano
- Department of Radiation Oncology, University Medical Centre Mannheim, Mannheim, Germany
| | - Lothar Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Adlung
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Kuntz L, Le Fèvre C, Jarnet D, Keller A, Meyer P, Mazzara C, Cebula H, Noel G, Antoni D. Repeated Stereotactic Radiotherapy for Local Brain Metastases Failure or Distant Brain Recurrent: A Retrospective Study of 184 Patients. Cancers (Basel) 2023; 15:4948. [PMID: 37894315 PMCID: PMC10605441 DOI: 10.3390/cancers15204948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The main advantages of stereotactic radiotherapy (SRT) are to delay whole-brain radiotherapy (WBRT) and to deliver ablative doses. Despite this efficacy, the risk of distant brain metastases (BM) one year after SRT ranges from 26% to 77% and 20 to 40% of patients required salvage treatment. The role and consequences of reirradiation remain unclear, particularly in terms of survival. The objective was to study overall survival (OS) and neurological death-free survival (NDFS) and to specify the prognostic factors of long-term survival. METHODS we retrospectively reviewed the data of patients treated between 2010 and 2020 with at least two courses of SRT without previous WBRT. RESULTS In total, 184 patients were treated for 915 BMs with two-to-six SRT sessions. Additional SRT sessions were provided for local (5.6%) or distant (94.4%) BM recurrence. The median number of BMs treated per SRT was one with a median of four BMs in total. The mean time between the two SRT sessions was 8.9 months (95%CI 7.7-10.1) and there was no significant difference in the delay between the two sessions. The 6-, 12- and 24-month NDFS rates were 97%, 82% and 52%, respectively. The 6-, 12- and 24-month OS rates were 91%, 70% and 38%, respectively. OS was statistically related to the number of SRT sessions (HR = 0.48; p < 0.01), recursive partitioning analysis (HR = 1.84; p = 0.01), salvage WBRT (HR = 0.48; p = 0.01) and brain metastasis velocity (high: HR = 13.83; p < 0.01; intermediate: HR = 4.93; p < 0.01). CONCLUSIONS Lung cancer and melanoma were associated with a lower NDFS compared to breast cancer. A low KPS, a low number of SRT sessions, synchronous extracerebral metastases, synchronous BMs, extracerebral progression at SRT1, a high BMV grade, no WBRT and local recurrence were also associated with a lower NDFS. A high KPS at SRT1 and low BMV grade are prognostic factors for better OS, regardless of the number of BM recurrence events.
Collapse
Affiliation(s)
- Laure Kuntz
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, 17 Rue Albert Calmette, 67200 Strasbourg, France; (L.K.); (C.L.F.); (A.K.); (D.A.)
| | - Clara Le Fèvre
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, 17 Rue Albert Calmette, 67200 Strasbourg, France; (L.K.); (C.L.F.); (A.K.); (D.A.)
| | - Delphine Jarnet
- Department of Medical Physics, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, 17 Rue Albert Calmette, 67200 Strasbourg, France; (D.J.); (P.M.); (C.M.)
| | - Audrey Keller
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, 17 Rue Albert Calmette, 67200 Strasbourg, France; (L.K.); (C.L.F.); (A.K.); (D.A.)
| | - Philippe Meyer
- Department of Medical Physics, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, 17 Rue Albert Calmette, 67200 Strasbourg, France; (D.J.); (P.M.); (C.M.)
| | - Christophe Mazzara
- Department of Medical Physics, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, 17 Rue Albert Calmette, 67200 Strasbourg, France; (D.J.); (P.M.); (C.M.)
| | - Hélène Cebula
- Neurosurgery Department, Hôpitaux Universitaires de Strasbourg, 1, Avenue Molière, 67098 Strasbourg, France;
| | - Georges Noel
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, 17 Rue Albert Calmette, 67200 Strasbourg, France; (L.K.); (C.L.F.); (A.K.); (D.A.)
| | - Delphine Antoni
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, 17 Rue Albert Calmette, 67200 Strasbourg, France; (L.K.); (C.L.F.); (A.K.); (D.A.)
| |
Collapse
|
4
|
Jablonska PA, Galán N, Barranco J, Leon S, Robledano R, Echeveste JI, Calvo A, Aristu J, Serrano D. Presence of Activated (Phosphorylated) STAT3 in Radiation Necrosis Following Stereotactic Radiosurgery for Brain Metastases. Int J Mol Sci 2023; 24:14219. [PMID: 37762522 PMCID: PMC10532304 DOI: 10.3390/ijms241814219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Brain radiation necrosis (RN) is a subacute or late adverse event following radiotherapy, involving an exacerbated inflammatory response of the brain tissue. The risk of symptomatic RN associated with stereotactic radiosurgery (SRS) as part of the treatment of brain metastases (BMs) has been a subject of recent investigation. The activation of the signal transducer and activator of transcription 3 (STAT3) was shown in reactive astrocytes (RA) associated with BMs. Given that the pathophysiological mechanisms behind RN are not fully understood, we sought to investigate the role of STAT3 among other inflammatory markers in RN development. A mouse model of RN using clinical LINAC-based SRS was designed to induce brain necrosis with the administration of 50 Gy in a single fraction to the left hemisphere using a circular collimator of 5 mm diameter. Immunohistochemistry and multiplex staining for CD4, CD8, CD68, GFAP, and STAT3 were performed. For validation, eleven patients with BMs treated with SRS who developed symptomatic RN and required surgery were identified to perform staining for CD68, GFAP, and STAT3. In the mouse model, the RN and perinecrotic areas showed significantly higher staining for F4/80+ and GFAP+ cells, with a high infiltration of CD4 and CD8 T-lymphocytes, when compared to the non-irradiated cerebral hemisphere. A high number of GFAP+pSTAT3+ and F4/80+pSTAT3+ cells was found in the RN areas and the rest of the irradiated hemisphere. The analysis of human brain specimens showed that astrocytes and microglia were actively phosphorylating STAT3 in the areas of RN and gliosis. Phosphorylated STAT3 is highly expressed in the microglia and RA pertaining to the areas of brain RN. Targeting STAT3 via inhibition represents a promising strategy to ameliorate symptomatic RN in BM patients undergoing SRS.
Collapse
Affiliation(s)
- Paola Anna Jablonska
- Department of Radiation Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Nuria Galán
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain (A.C.); (D.S.)
| | - Jennifer Barranco
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain (A.C.); (D.S.)
| | - Sergio Leon
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain (A.C.); (D.S.)
- Department of Pathological Anatomy, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ramón Robledano
- Department of Pathological Anatomy, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - José Ignacio Echeveste
- Department of Pathological Anatomy, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alfonso Calvo
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain (A.C.); (D.S.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Javier Aristu
- Department of Radiation Oncology and Proton Therapy Unit, Clinica Universidad de Navarra, 28027 Madrid, Spain;
| | - Diego Serrano
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain (A.C.); (D.S.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- CIBERONC, ISCIII, 28029 Madrid, Spain
| |
Collapse
|
5
|
Kuntz L, Le Fèvre C, Jarnet D, Keller A, Meyer P, Thiery A, Cebula H, Noel G, Antoni D. Changes in the characteristics of patients treated for brain metastases with repeat stereotactic radiotherapy (SRT): a retrospective study of 184 patients. Radiat Oncol 2023; 18:21. [PMID: 36717863 PMCID: PMC9885681 DOI: 10.1186/s13014-023-02200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/03/2023] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Brain metastases (BMs) are the leading cause of intracranial malignant neoplasms in adults. WHO, Karnofsky performance status (KPS), age, number of BMs, extracerebral progression (ECP), recursive partitioning analysis (RPA), diagnosis-specific graded prognostic assessment (Ds-GPA) are validated prognostic tools to help clinicians decide on treatment. No consensus exists for repeat stereotactic radiotherapy (SRT) for BMs. The aim of this study was to review the changes in patient characteristics treated with repeated SRTs. METHODS AND MATERIALS The data of patients treated between 2010 and 2020 with at least two courses of SRT without previous whole brain radiotherapy (WBRT) were reviewed. Age, WHO, KPS, ECP, type of systemic treatment, number of BMs were recorded. RPA, Ds-GPA and brain metastasis velocity (BMV) were calculated. RESULTS 184 patients were treated for 915 BMs and received two to six SRTs for local or distant brain recurrence. The median number of BMs treated per SRT was 1 (range: 1-6), for a median of 4 BMs treated during all sessions (range: 2-19). WHO, Ds-GPA and RPA were stable between each session of SRT, whereas KPS was significantly better in SRT1 than in the following SRT. The number of BMs was not significantly different between each SRT, but there was a tendency for more BM at SRT1 (p = 0.06). At SRT1, patients had largest BM and undergo more surgery than during the following SRT (p < 0.001). 6.5%, 37.5% and 56% of patients were classified as high, intermediate, and low BMV, respectively, at the last SRT session. There was almost perfect concordance between the BMV-grade calculated at the last SRT session and at SRT2 (r = 0.89; p < 0.001). CONCLUSION Repeated SRT doesn't lead to a marked alteration in the general condition, KPS was maintained at over 70% for more than 95% of patients during all SRTs. Long survival can be expected, especially in low-grade BMV patients. WBRT shouldn't be aborted, especially for patients developing more than twelve BMs annually.
Collapse
Affiliation(s)
- L. Kuntz
- grid.512000.6Department of Radiation Therapy, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
| | - C. Le Fèvre
- grid.512000.6Department of Radiation Therapy, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
| | - D. Jarnet
- grid.512000.6Medical Physics Unit, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
| | - A. Keller
- grid.512000.6Department of Radiation Therapy, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
| | - P. Meyer
- grid.512000.6Medical Physics Unit, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
| | - A. Thiery
- grid.512000.6Medical Information Department, Institut de Cancérologie Strasbourg Europe (ICANS), 3 Rue de La Porte de L’Hôpital, 67065 Strasbourg Cedex, France
| | - H. Cebula
- grid.412220.70000 0001 2177 138XDepartment of Neurosurgery, University Hospitals of Strasbourg, 1 Avenue Molière, 67200 Strasbourg, France
| | - G. Noel
- grid.512000.6Department of Radiation Therapy, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
| | - D. Antoni
- grid.512000.6Department of Radiation Therapy, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
| |
Collapse
|
6
|
Kuntz L, Le Fèvre C, Jarnet D, Keller A, Meyer P, Thiery A, Cebula H, Noel G, Antoni D. Acute toxicities and cumulative dose to the brain of repeated sessions of stereotactic radiotherapy (SRT) for brain metastases: a retrospective study of 184 patients. Radiat Oncol 2023; 18:7. [PMID: 36627646 PMCID: PMC9830690 DOI: 10.1186/s13014-022-02194-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Stereotactic radiation therapy (SRT) is a focal treatment for brain metastases (BMs); thus, 20 to 40% of patients will require salvage treatment after an initial SRT session, either because of local or distant failure. SRT is not exempt from acute toxicity, and the acute toxicities of repeated SRT are not well known. The objective of this study was to analyze the acute toxicities of repeated courses of SRT and to determine whether repeated SRT could lead to cumulative brain doses equivalent to those of whole-brain radiotherapy (WBRT). MATERIAL AND METHODS Between 2010 and 2020, data from 184 patients treated for 915 BMs via two to six SRT sessions for local or distant BM recurrence without previous or intercurrent WBRT were retrospectively reviewed. Patients were seen via consultations during SRT, and the delivered dose, the use of corticosteroid therapy and neurological symptoms were recorded and rated according to the CTCAEv4. The dosimetric characteristics of 79% of BMs were collected, and summation plans of 76.6% of BMs were created. RESULTS 36% of patients developed acute toxicity during at least one session. No grade three or four toxicity was registered, and grade one or two cephalalgy was the most frequently reported symptom. There was no significant difference in the occurrence of acute toxicity between consecutive SRT sessions. In the multivariate analysis, acute toxicity was associated with the use of corticosteroid therapy before irradiation (OR = 2.6; p = 0.01), BMV grade (high vs. low grade OR = 5.17; p = 0.02), and number of SRT sessions (3 SRT vs. 2 SRT: OR = 2.64; p = 0.01). The median volume equivalent to the WBRT dose (VWBRT) was 47.9 ml. In the multivariate analysis, the VWBRT was significantly associated with the total GTV (p < 0.001) and number of BMs (p < 0.001). Even for patients treated for more than ten cumulated BMs, the median BED to the brain was very low compared to the dose delivered during WBRT. CONCLUSION Repeated SRT for local or distant recurrent BM is well tolerated, without grade three or four toxicity, and does not cause more acute neurological toxicity with repeated SRT sessions. Moreover, even for patients treated for more than ten BMs, the VWBRT is low.
Collapse
Affiliation(s)
- L. Kuntz
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - C. Le Fèvre
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - D. Jarnet
- grid.512000.6Medical Physics Unit, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - A. Keller
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - P. Meyer
- grid.512000.6Medical Physics Unit, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - A. Thiery
- grid.512000.6Medical Information Department, Institut de Cancérologie Strasbourg Europe (ICANS), 3 rue de la Porte de L’Hôpital, 67065 Strasbourg Cedex, France
| | - H. Cebula
- grid.412220.70000 0001 2177 138XDepartment of Neurosurgery, University Hospitals of Strasbourg, 1 Avenue Molière, 67200 Strasbourg, France
| | - G. Noel
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - D. Antoni
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| |
Collapse
|
7
|
Stereotactic Laser Ablation (SLA) followed by consolidation stereotactic radiosurgery (cSRS) as treatment for brain metastasis that recurred locally after initial radiosurgery (BMRS): a multi-institutional experience. J Neurooncol 2022; 156:295-306. [PMID: 35001245 DOI: 10.1007/s11060-021-03893-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The optimal treatment paradigm for brain metastasis that recurs locally after initial radiosurgery remains an area of active investigation. Here, we report outcomes for patients with BMRS treated with stereotactic laser ablation (SLA, also known as laser interstitial thermal therapy, LITT) followed by consolidation radiosurgery. METHODS Clinical outcomes of 20 patients with 21 histologically confirmed BMRS treated with SLA followed by consolidation SRS and > 6 months follow-up were collected retrospectively across three participating institutions. RESULTS Consolidation SRS (5 Gy × 5 or 6 Gy × 5) was carried out 16-73 days (median of 26 days) post-SLA in patients with BMRS. There were no new neurological deficits after SLA/cSRS. While 3/21 (14.3%) patients suffered temporary Karnofsky Performance Score (KPS) decline after SLA, no KPS decline was observed after cSRS. There were no 30-day mortalities or wound complications. Two patients required re-admission within 30 days of cSRS (severe headache that resolved with steroid therapy (n = 1) and new onset seizure (n = 1)). With a median follow-up of 228 days (range: 178-1367 days), the local control rate at 6 and 12 months (LC6, LC12) was 100%. All showed diminished FLAIR volume surrounding the SLA/cSRS treated BMRS at the six-month follow-up; none of the patients required steroid for symptoms attributable to these BMRS. These results compare favorably to the available literature for repeat SRS or SLA-only treatment of BMRS. CONCLUSIONS This multi-institutional experience supports further investigations of SLA/cSRS as a treatment strategy for BMRS.
Collapse
|
8
|
Cummins DD, Morshed RA, Chavez MM, Avalos LN, Sudhakar V, Chung JE, Gallagher A, Saggi S, Daras M, Braunstein S, Theodosopoulos PV, McDermott MW, Aghi MK. Salvage Surgery for Local Control of Brain Metastases After Previous Stereotactic Radiosurgery: A Single-Center Series. World Neurosurg 2021; 158:e323-e333. [PMID: 34740830 DOI: 10.1016/j.wneu.2021.10.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Although overall survival (OS) has improved in patients with brain metastases (BMs), control of recurrent BMs remains a therapeutic challenge. Salvage surgery may achieve acceptable control rates in the setting of progression after previous stereotactic radiosurgery (SRS), yet it remains a question how additional adjuvant therapies may affect outcomes and how patient selection for salvage surgery may be optimized. METHODS Patients receiving salvage surgery for BM progression after previous SRS were retrospectively reviewed from a single center. Outcomes of interest included local tumor progression, leptomeningeal dissemination, and OS. Cox proportional hazard models and nominal logistic regression were applied to determine factors associated with outcomes of interest. RESULTS A total of 43 patients with 50 BMs were included. After salvage surgery, local progression was observed for 17 BMs (34%), leptomeningeal dissemination was observed in 17 patients (39.5%), and censored median OS was 17.9 months. On multivariate analysis, use of brachytherapy was associated with improved local control (hazard ratio [HR], 0.15; 95% confidence interval [CI], 0.04-0.6; P = 0.008). For patients treated with SRS ≥4.5 months before salvage surgery, both brachytherapy (HR, 0.07; 95% CI, 0.01-0.39; P = 0.002) and postoperative adjuvant SRS (HR, 0.14; 95% CI, 0.02-1.00; P = 0.05) were associated with improved local control compared with no adjuvant radiation therapy. Presence of extracranial malignancy (HR, 6.70; 95% CI, 2.58-17.42; P < 0.0001) was associated with shorter survival. Graded prognostic assessment underestimated survival in 79.1% of patients, with a mean difference of 18.9 months between graded prognostic assessment-estimated and actual OS. CONCLUSIONS In properly selected patients, salvage surgery may be an appropriate therapy for BM progression after previous SRS. Adjuvant brachytherapy and repeat SRS can offer significant benefit for local control with salvage resection.
Collapse
Affiliation(s)
- Daniel D Cummins
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA; School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.
| | - Miguel M Chavez
- School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Lauro N Avalos
- School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Vivek Sudhakar
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason E Chung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Aaron Gallagher
- School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Satvir Saggi
- School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Mariza Daras
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Steve Braunstein
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, USA
| | - Philip V Theodosopoulos
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | | | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Lucia F, Touati R, Crainic N, Dissaux G, Pradier O, Bourbonne V, Schick U. Efficacy and Safety of a Second Course of Stereotactic Radiation Therapy for Locally Recurrent Brain Metastases: A Systematic Review. Cancers (Basel) 2021; 13:4929. [PMID: 34638412 PMCID: PMC8508410 DOI: 10.3390/cancers13194929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
Recent advances in cancer treatments have increased overall survival and consequently, local failures (LFs) after stereotactic radiotherapy/radiosurgery (SRS/SRT) have become more frequent. LF following SRS or SRT may be treated with a second course of SRS (SRS2) or SRT (SRT2). However, there is no consensus on whenever to consider reirradiation. A literature search was conducted according to PRISMA guidelines. Analysis included 13 studies: 329 patients (388 metastases) with a SRS2 and 135 patients (161 metastases) with a SRT2. The 1-year local control rate ranged from 46.5% to 88.3%. Factors leading to poorer LC were histology (melanoma) and lack of prior whole-brain radiation therapy, large tumor size and lower dose at SRS2/SRT2, poorer response at first SRS/SRT, poorer performance status, and no controlled extracranial disease. The rate of radionecrosis (RN) ranged from 2% to 36%. Patients who had a large tumor volume, higher dose and higher value of prescription isodose line at SRS2/SRT2, and large overlap between brain volume irradiated at SRS1/SRT1 and SRS2/SRT2 at doses of 18 and 12 Gy had a higher risk of developing RN. Prospective studies involving a larger number of patients are still needed to determine the best management of patients with local recurrence of brain metastases.
Collapse
Affiliation(s)
- François Lucia
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Ruben Touati
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Nicolae Crainic
- Neurology Department, University Hospital of Brest, 29200 Brest, France;
| | - Gurvan Dissaux
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Olivier Pradier
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Vincent Bourbonne
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Ulrike Schick
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| |
Collapse
|
10
|
Jablonska PA, Bosch-Barrera J, Serrano D, Valiente M, Calvo A, Aristu J. Challenges and Novel Opportunities of Radiation Therapy for Brain Metastases in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13092141. [PMID: 33946751 PMCID: PMC8124815 DOI: 10.3390/cancers13092141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Lung cancer is the most common primary malignancy that tends to metastasize to the brain. Owing to improved survival of lung cancer patients, the prevalence of brain metastases is a matter of growing concern. Brain radiotherapy remains the mainstay in the management of metastatic CNS disease. However, new targeted therapies such as the tyrosine kinase or immune checkpoint inhibitors have demonstrated intracranial activity and promising tumor response rates. Here, we review the current and emerging therapeutical strategies for brain metastases from non-small cell lung cancer, both brain-directed and systemic, as well as the uncertainties that may arise from their combination. Abstract Approximately 20% patients with non-small cell lung cancer (NSCLC) present with CNS spread at the time of diagnosis and 25–50% are found to have brain metastases (BMs) during the course of the disease. The improvement in the diagnostic tools and screening, as well as the use of new systemic therapies have contributed to a more precise diagnosis and prolonged survival of lung cancer patients with more time for BMs development. In the past, most of the systemic therapies failed intracranially because of the inability to effectively cross the blood brain barrier. Some of the new targeted therapies, especially the group of tyrosine kinase inhibitors (TKIs) have shown durable CNS response. However, the use of ionizing radiation remains vital in the management of metastatic brain disease. Although a decrease in CNS-related deaths has been achieved over the past decade, many challenges arise from the need of multiple and repeated brain radiation treatments, which carry along not insignificant risks and toxicity. The combination of stereotactic radiotherapy and systemic treatments in terms of effectiveness and adverse effects, such as radionecrosis, remains a subject of ongoing investigation. This review discusses the challenges of the use of radiation therapy in NSCLC BMs in view of different systemic treatments such as chemotherapy, TKIs and immunotherapy. It also outlines the future perspectives and strategies for personalized BMs management.
Collapse
Affiliation(s)
- Paola Anna Jablonska
- Brain Metastases and CNS Oncology Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada
- Department of Radiation Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: ; Tel.: +1-416-946-2000
| | - Joaquim Bosch-Barrera
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, 17007 Girona, Spain;
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17071 Girona, Spain
| | - Diego Serrano
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (D.S.); (A.C.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | | | - Alfonso Calvo
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (D.S.); (A.C.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Javier Aristu
- Department of Radiation Oncology and Protontherapy Unit, Clinica Universidad de Navarra, 28027 Madrid, Spain;
| |
Collapse
|