1
|
Dardare J, Witz A, Betz M, François A, Lamy L, Husson M, Demange J, Rouyer M, Lambert A, Merlin JL, Gilson P, Harlé A. DDB2 expression lights the way for precision radiotherapy response in PDAC cells, with or without olaparib. Cell Death Discov 2024; 10:411. [PMID: 39333096 PMCID: PMC11436999 DOI: 10.1038/s41420-024-02188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Therapeutic options for PDAC are primarily restricted to surgery in the early stages of the disease or chemotherapy in advanced disease. Only a subset of patients with germline defects in BRCA1/2 genes can potentially benefit from personalized therapy, with the PARP inhibitor olaparib serving as a maintenance treatment for metastatic disease. Although the role of radiotherapy in PDAC remains controversial, the use of radiosensitizers offers hope for improving cancer management. Previously, we have shown that damage-specific DNA binding protein 2 (DDB2) is a potential prognostic and predictive biomarker for chemotherapy response in PDAC. In this study, we investigated the function of DDB2 in radiotherapy response, with and without radiosensitization by olaparib in PDAC cells. Our findings demonstrated DDB2 resistance to radiation effects, thereby improving cell survival and enhancing the repair of ionizing radiation-induced DNA double-strand breaks. We observed that DDB2 expression enhances the cell cycle arrest in the G2 phase by phosphorylating Chk1 and Chk2 cell cycle checkpoints. Additionally, we identified a novel link between DDB2 and PARP1 in the context of radiotherapy, which enhances the expression and activity of PARP1. Our findings highlight the potential of low-DDB2 expression to potentiate the radiosensitization effect of olaparib in PDAC cells. Collectively, this study provides novel insights into the impacts of DDB2 in the radiotherapy response in PDAC, enabling its employment as a potential biomarker to predict resistance to radiation. Furthermore, DDB2 represents a significant step forward in precision radiotherapy by widening the scope of patients who can be benefiting from olaparib as a radiosensitizer. Hence, this research has the potential to enrich the limited use of radiotherapy in the care of patients with PDAC.
Collapse
Affiliation(s)
- Julie Dardare
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France.
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France.
| | - Andréa Witz
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Margaux Betz
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Aurélie François
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Laureline Lamy
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Marie Husson
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jessica Demange
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Marie Rouyer
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Aurélien Lambert
- Département d'oncologie médicale, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Pauline Gilson
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Alexandre Harlé
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
2
|
Costa V, Giovannetti E, Lonardo E. Revolutionizing Cancer Treatment: Unveiling New Frontiers by Targeting the (Un)Usual Suspects. Cancers (Basel) 2023; 16:132. [PMID: 38201558 PMCID: PMC10778478 DOI: 10.3390/cancers16010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
This Special Issue includes original articles and reviews on both established and innovative approaches to cancer targeting, showcased at the 29th IGB Workshop titled "Targeting the (un)usual suspects in cancer" "https://29thigbworkshop [...].
Collapse
Affiliation(s)
- Valerio Costa
- Institute of Genetics and Biophysics (IGB), National Research Council of Italy (CNR), 80131 Naples, Italy;
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Fondazione Pisana per la Scienza, San Giuliano Terme, 56124 Pisa, Italy
| | - Enza Lonardo
- Institute of Genetics and Biophysics (IGB), National Research Council of Italy (CNR), 80131 Naples, Italy;
| |
Collapse
|
3
|
Du TQ, Liu R, Zhang Q, Luo H, Chen Y, Tan M, Wang Q, Wu X, Liu Z, Sun S, Yang K, Tian J, Wang X. Does particle radiation have superior radiobiological advantages for prostate cancer cells? A systematic review of in vitro studies. Eur J Med Res 2022; 27:306. [PMID: 36572945 PMCID: PMC9793637 DOI: 10.1186/s40001-022-00942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Charged particle beams from protons to carbon ions provide many significant physical benefits in radiation therapy. However, preclinical studies of charged particle therapy for prostate cancer are extremely limited. The aim of this study was to comprehensively investigate the biological effects of charged particles on prostate cancer from the perspective of in vitro studies. METHODS We conducted a systematic review by searching EMBASE (OVID), Medline (OVID), and Web of Science databases to identify the publications assessing the radiobiological effects of charged particle irradiation on prostate cancer cells. The data of relative biological effectiveness (RBE), surviving fraction (SF), standard enhancement ratio (SER) and oxygen enhancement ratio (OER) were extracted. RESULTS We found 12 studies met the eligible criteria. The relative biological effectiveness values of proton and carbon ion irradiation ranged from 0.94 to 1.52, and 1.67 to 3.7, respectively. Surviving fraction of 2 Gy were 0.17 ± 0.12, 0.55 ± 0.20 and 0.53 ± 0.16 in carbon ion, proton, and photon irradiation, respectively. PNKP inhibitor and gold nanoparticles were favorable sensitizing agents, while it was presented poorer performance in GANT61. The oxygen enhancement ratio values of photon and carbon ion irradiation were 2.32 ± 0.04, and 1.77 ± 0.13, respectively. Charged particle irradiation induced more G0-/G1- or G2-/M-phase arrest, more expression of γ-H2AX, more apoptosis, and lower motility and/or migration ability than photon irradiation. CONCLUSIONS Both carbon ion and proton irradiation have advantages over photon irradiation in radiobiological effects on prostate cancer cell lines. Carbon ion irradiation seems to have further advantages over proton irradiation.
Collapse
Affiliation(s)
- Tian-Qi Du
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Ruifeng Liu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Qiuning Zhang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Hongtao Luo
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Yanliang Chen
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Mingyu Tan
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Qian Wang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Xun Wu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Zhiqiang Liu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Shilong Sun
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Kehu Yang
- grid.32566.340000 0000 8571 0482Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Jinhui Tian
- grid.32566.340000 0000 8571 0482Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Xiaohu Wang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| |
Collapse
|
4
|
Wang D, Liu R, Zhang Q, Luo H, Chen J, Dong M, Wang Y, Ou Y, Liu Z, Sun S, Yang K, Tian J, Li Z, Wang X. Charged Particle Irradiation for Pancreatic Cancer: A Systematic Review of In Vitro Studies. Front Oncol 2022; 11:775597. [PMID: 35059313 PMCID: PMC8764177 DOI: 10.3389/fonc.2021.775597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023] Open
Abstract
Purpose Given the higher precision accompanied by optimized sparing of normal tissue, charged particle therapy was thought of as a promising treatment for pancreatic cancer. However, systematic preclinical studies were scarce. We aimed to investigate the radiobiological effects of charged particle irradiation on pancreatic cancer cell lines. Methods A systematic literature search was performed in EMBASE (OVID), Medline (OVID), and Web of Science databases. Included studies were in vitro English publications that reported the radiobiological effects of charged particle irradiation on pancreatic cancer cells. Results Thirteen carbon ion irradiation and seven proton irradiation in vitro studies were included finally. Relative biological effectiveness (RBE) values of carbon ion irradiation and proton irradiation in different human pancreatic cancer cell lines ranged from 1.29 to 4.5, and 0.6 to 2.1, respectively. The mean of the surviving fraction of 2 Gy (SF2) of carbon ion, proton, and photon irradiation was 0.18 ± 0.11, 0.48 ± 0.11, and 0.57 ± 0.13, respectively. Carbon ion irradiation induced more G2/M arrest and a longer-lasting expression of γH2AX than photon irradiation. Combination therapies enhanced the therapeutic effects of pancreatic cell lines with a mean standard enhancement ratio (SER) of 1.66 ± 0.63 for carbon ion irradiation, 1.55 ± 0.27 for proton irradiation, and 1.52 ± 0.30 for photon irradiation. Carbon ion irradiation was more effective in suppressing the migration and invasion than photon irradiation, except for the PANC-1 cells. Conclusions Current in vitro evidence demonstrates that, compared with photon irradiation, carbon ion irradiation offers superior radiobiological effects in the treatment of pancreatic cancer. Mechanistically, high-LET irradiation may induce complex DNA damage and ultimately promote genomic instability and cell death. Both carbon ion irradiation and proton irradiation confer similar sensitization effects in comparison with photon irradiation when combined with chemotherapy or targeted therapy.
Collapse
Affiliation(s)
- Dandan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Junru Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Meng Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yuhang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yuhong Ou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zheng Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| |
Collapse
|
5
|
Lan B, Zeng S, Zhang S, Ren X, Xing Y, Kutschick I, Pfeffer S, Frey B, Britzen-Laurent N, Grützmann R, Cordes N, Pilarsky C. CRISPR-Cas9 Screen Identifies DYRK1A as a Target for Radiotherapy Sensitization in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14020326. [PMID: 35053488 PMCID: PMC8773906 DOI: 10.3390/cancers14020326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Pancreatic cancer is the fourth leading cause of cancer-related death in Western countries. Although several therapeutic strategies have been developed for pancreatic cancer, radiation therapy has not yet yielded satisfactory results. Unraveling the mechanism of radioresistance in pancreatic cancer and developing new therapeutic targets has become a major challenge. Therefore, we applied kinome-wide CRISPR-Cas9 loss-of-function screening combined with the 3D cell culture method and identified DYRK1A as a sensitive target for radiotherapy. Additionally, we confirmed that DYRK1A-targeted inhibitors could enhance the efficacy of radiotherapy. Our results further support the use of CRISPR-Cas9 screening to identify novel therapeutic targets and develop new strategies to enhance radiotherapy efficacy in pancreatic cancer. Abstract Although radiation therapy has recently made great advances in cancer treatment, the majority of patients diagnosed with pancreatic cancer (PC) cannot achieve satisfactory outcomes due to intrinsic and acquired radioresistance. Identifying the molecular mechanisms that impair the efficacy of radiotherapy and targeting these pathways are essential to improve the radiation response of PC patients. Our goal is to identify sensitive targets for pancreatic cancer radiotherapy (RT) using the kinome-wide CRISPR-Cas9 loss-of-function screen and enhance the therapeutic effect through the development and application of targeted inhibitors combined with radiotherapy. We transduced pancreatic cancer cells with a protein kinase library; 2D and 3D library cells were irradiated daily with a single dose of up to 2 Gy for 4 weeks for a total of 40 Gy using an X-ray generator. Sufficient DNA was collected for next-generation deep sequencing to identify candidate genes. In this study, we identified several cell cycle checkpoint kinases and DNA damage related kinases in 2D- and 3D-cultivated cells, including DYRK1A, whose loss of function sensitizes cells to radiotherapy. Additionally, we demonstrated that the harmine-targeted suppression of DYRK1A used in conjunction with radiotherapy increases DNA double-strand breaks (DSBs) and impairs homologous repair (HR), resulting in more cancer cell death. Our results support the use of CRISPR-Cas9 screening to identify new therapeutic targets, develop radiosensitizers, and provide novel strategies for overcoming the tolerance of pancreatic cancer to radiotherapy.
Collapse
Affiliation(s)
- Bin Lan
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Siyuan Zeng
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Shuman Zhang
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Xiaofan Ren
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Yuming Xing
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Isabella Kutschick
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Susanne Pfeffer
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Nathalie Britzen-Laurent
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus Technische Universität Dresden, 01307 Dresden, Germany;
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (B.L.); (S.Z.); (S.Z.); (X.R.); (Y.X.); (I.K.); (S.P.); (N.B.-L.); (R.G.)
- Correspondence:
| |
Collapse
|