1
|
Alperovich NY, Vasilyeva OB, Schaffter SW. Prevention of ribozyme catalysis through cDNA synthesis enables accurate RT-qPCR measurements of context-dependent ribozyme activity. RNA (NEW YORK, N.Y.) 2025; 31:633-645. [PMID: 40050070 PMCID: PMC12001966 DOI: 10.1261/rna.080243.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/19/2025] [Indexed: 03/28/2025]
Abstract
Self-cleaving ribozymes are important tools in synthetic biology, biomanufacturing, and nucleic acid therapeutics. These broad applications deploy ribozymes in many genetic and environmental contexts, which can influence activity. Thus, accurate measurements of ribozyme activity across diverse contexts are crucial for validating new ribozyme sequences and ribozyme-based biotechnologies. Ribozyme activity measurements that rely on RNA extraction, such as RNA sequencing or reverse transcription-quantitative polymerase chain reaction (RT-qPCR), are generalizable to most applications and have high sensitivity. However, the activity measurement is indirect, taking place after RNA is isolated from the environment of interest and copied to DNA. Thus, these measurements may not accurately reflect the activity in the original context. Here, we develop and validate an RT-qPCR method for measuring context-dependent ribozyme activity using a set of self-cleaving RNAs for which context-dependent ribozyme cleavage is known in vitro. We find that RNA extraction and reverse transcription conditions can induce substantial ribozyme cleavage, resulting in incorrect activity measurements with RT-qPCR. To restore the accuracy of the RT-qPCR measurements, we introduce an oligonucleotide into the sample preparation workflow that inhibits ribozyme activity. We then apply our method to measure ribozyme cleavage of RNAs produced in Escherichia coli These results have broad implications for many ribozyme measurements and technologies.
Collapse
Affiliation(s)
- Nina Y Alperovich
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Olga B Vasilyeva
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Samuel W Schaffter
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
2
|
Deal BR, Ma R, Narum S, Ogasawara H, Duan Y, Kindt JT, Salaita K. Heteromultivalency enables enhanced detection of nucleic acid mutations. Nat Chem 2024; 16:229-238. [PMID: 37884668 DOI: 10.1038/s41557-023-01345-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type targets. However, DNA hybridization-based techniques require precise tuning of the probe's binding affinity to manage the inherent trade-off between specificity and sensitivity. As conventional hybridization offers limited control over binding affinity, here we generate heteromultivalent DNA-functionalized particles and demonstrate optimized hybridization specificity for targets containing one or two mutations. By investigating the role of oligo lengths, spacer lengths and binding orientation, we reveal that heteromultivalent hybridization enables fine-tuned specificity for a single SNP and dramatic enhancements in specificity for two non-proximal SNPs empowered by highly cooperative binding. Capitalizing on these abilities, we demonstrate straightforward discrimination between heterozygous cis and trans mutations and between different strains of the SARS-CoV-2 virus. Our findings indicate that heteromultivalent hybridization offers substantial improvements over conventional monovalent hybridization-based methods.
Collapse
Affiliation(s)
- Brendan R Deal
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Rong Ma
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Steven Narum
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - James T Kindt
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Vilcapoma J, Aliyeva A, Hayden A, Chandrasekaran AR, Zhou L, Punnoose JA, Yang D, Hansen C, Shiu SCC, Russell A, George KS, Wong WP, Halvorsen K. A non-enzymatic test for SARS-CoV-2 RNA using DNA nanoswitches. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.31.23290613. [PMID: 37398235 PMCID: PMC10312858 DOI: 10.1101/2023.05.31.23290613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The emergence of a highly contagious novel coronavirus in 2019 led to an unprecedented need for large scale diagnostic testing. The associated challenges including reagent shortages, cost, deployment delays, and turnaround time have all highlighted the need for an alternative suite of low-cost tests. Here, we demonstrate a diagnostic test for SARS-CoV-2 RNA that provides direct detection of viral RNA and eliminates the need for costly enzymes. We employ DNA nanoswitches that respond to segments of the viral RNA by a change in shape that is readable by gel electrophoresis. A new multi-targeting approach samples 120 different viral regions to improve the limit of detection and provide robust detection of viral variants. We apply our approach to a cohort of clinical samples, positively identifying a subset of samples with high viral loads. Since our method directly detects multiple regions of viral RNA without amplification, it eliminates the risk of amplicon contamination and renders the method less susceptible to false positives. This new tool can benefit the COVID-19 pandemic and future emerging outbreaks, providing a third option between amplification-based RNA detection and protein antigen detection. Ultimately, we believe this tool can be adapted both for low-resource onsite testing as well as for monitoring viral loads in recovering patients.
Collapse
Affiliation(s)
- Javier Vilcapoma
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Asmer Aliyeva
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Andrew Hayden
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | | | - Lifeng Zhou
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | | | - Darren Yang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Clinton Hansen
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Simon Chi-Chin Shiu
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Alexis Russell
- Laboratory of Viral Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Kirsten St. George
- Laboratory of Viral Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Biomedical Science, University at Albany, State University of New York, Albany, NY 12208
| | - Wesley P. Wong
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| |
Collapse
|
4
|
Zhu J, Tivony R, Bošković F, Pereira-Dias J, Sandler SE, Baker S, Keyser UF. Multiplexed Nanopore-Based Nucleic Acid Sensing and Bacterial Identification Using DNA Dumbbell Nanoswitches. J Am Chem Soc 2023. [PMID: 37220424 DOI: 10.1021/jacs.3c01649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Multiplexed nucleic acid sensing methods with high specificity are vital for clinical diagnostics and infectious disease control, especially in the postpandemic era. Nanopore sensing techniques have developed in the past two decades, offering versatile tools for biosensing while enabling highly sensitive analyte measurements at the single-molecule level. Here, we establish a nanopore sensor based on DNA dumbbell nanoswitches for multiplexed nucleic acid detection and bacterial identification. The DNA nanotechnology-based sensor switches from an "open" into a "closed" state when a target strand hybridizes to two sequence-specific sensing overhangs. The loop in the DNA pulls two groups of dumbbells together. The change in topology results in an easily recognized peak in the current trace. Simultaneous detection of four different sequences was achieved by assembling four DNA dumbbell nanoswitches on one carrier. The high specificity of the dumbbell nanoswitch was verified by distinguishing single base variants in DNA and RNA targets using four barcoded carriers in multiplexed measurements. By combining multiple dumbbell nanoswitches with barcoded DNA carriers, we identified different bacterial species even with high sequence similarity by detecting strain specific 16S ribosomal RNA (rRNA) fragments.
Collapse
Affiliation(s)
- Jinbo Zhu
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Ran Tivony
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Filip Bošković
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Joana Pereira-Dias
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffery Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, U.K
| | - Sarah E Sandler
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffery Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, U.K
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
5
|
Yang R, Li J, Wu Y, Jiang X, Qu S, Wang Q, Liang H, Zen K. A novel method to purify small RNAs from human tissues for methylation analysis by LC-MS/MS. Front Mol Biosci 2022; 9:949181. [PMID: 36111135 PMCID: PMC9468635 DOI: 10.3389/fmolb.2022.949181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Methylation modification of small RNAs, including miRNA, piRNA, and tsRNA, is critical for small RNA biogenesis and biological function. Methylation of individual small RNA can be defined by liquid chromatography-coupled with mass spectrometry (LC-MS/MS). However, LC-MS/MS analysis requires a high purity of individual small RNA. Due to the difficulty of purifying specific small RNA from tissues or cells, the progress in characterizing small RNA methylation by LC-MS/MS is limited. Here, we report a novel method that can efficiently purify small RNA from human tissues for LC-MS/MS analysis. This method includes two steps: 1) pull down the target small RNA by incubating total small RNAs (18–24 nt) extracted from human tissues with a biotinylated antisense oligonucleotide of the target small RNA, followed by capturing the binding duplex of biotinylated antisense and small RNA via streptavidin magnetic beads, and 2) protect the target small RNA by pairing it with a single-strand DNA, which sequence is complementary to the target small RNA, to form a DNA/RNA hybrid double-strand, followed by sequential digestion with exonuclease I, nuclease S1, and DNase I, respectively. Furthermore, employing a mixture of four pairs of synthetic methylated and non-methylated small RNAs, we further refined this two-step method by optimizing the nuclease S1 treatment condition. With this method, we successfully purified miR-21-5p, miR-26-5p, piR-020485, and tsRNA from human lung and sperm tissue samples and analyzed their 2′-O-methylation modification at the 3′-end by LC-MS/MS.
Collapse
Affiliation(s)
- Rong Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jianfeng Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yifan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinli Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shuang Qu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- *Correspondence: Ke Zen, ; Hongwei Liang, ; Qiang Wang,
| | - Hongwei Liang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- *Correspondence: Ke Zen, ; Hongwei Liang, ; Qiang Wang,
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- *Correspondence: Ke Zen, ; Hongwei Liang, ; Qiang Wang,
| |
Collapse
|