1
|
Porubsky D, Dashnow H, Sasani TA, Logsdon GA, Hallast P, Noyes MD, Kronenberg ZN, Mokveld T, Koundinya N, Nolan C, Steely CJ, Guarracino A, Dolzhenko E, Harvey WT, Rowell WJ, Grigorev K, Nicholas TJ, Goldberg ME, Oshima KK, Lin J, Ebert P, Watkins WS, Leung TY, Hanlon VCT, McGee S, Pedersen BS, Happ HC, Jeong H, Munson KM, Hoekzema K, Chan DD, Wang Y, Knuth J, Garcia GH, Fanslow C, Lambert C, Lee C, Smith JD, Levy S, Mason CE, Garrison E, Lansdorp PM, Neklason DW, Jorde LB, Quinlan AR, Eberle MA, Eichler EE. Human de novo mutation rates from a four-generation pedigree reference. Nature 2025:10.1038/s41586-025-08922-2. [PMID: 40269156 DOI: 10.1038/s41586-025-08922-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
Understanding the human de novo mutation (DNM) rate requires complete sequence information1. Here using five complementary short-read and long-read sequencing technologies, we phased and assembled more than 95% of each diploid human genome in a four-generation, twenty-eight-member family (CEPH 1463). We estimate 98-206 DNMs per transmission, including 74.5 de novo single-nucleotide variants, 7.4 non-tandem repeat indels, 65.3 de novo indels or structural variants originating from tandem repeats, and 4.4 centromeric DNMs. Among male individuals, we find 12.4 de novo Y chromosome events per generation. Short tandem repeats and variable-number tandem repeats are the most mutable, with 32 loci exhibiting recurrent mutation through the generations. We accurately assemble 288 centromeres and six Y chromosomes across the generations and demonstrate that the DNM rate varies by an order of magnitude depending on repeat content, length and sequence identity. We show a strong paternal bias (75-81%) for all forms of germline DNM, yet we estimate that 16% of de novo single-nucleotide variants are postzygotic in origin with no paternal bias, including early germline mosaic mutations. We place all this variation in the context of a high-resolution recombination map (~3.4 kb breakpoint resolution) and find no correlation between meiotic crossover and de novo structural variants. These near-telomere-to-telomere familial genomes provide a truth set to understand the most fundamental processes underlying human genetic variation.
Collapse
Affiliation(s)
- David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Harriet Dashnow
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas A Sasani
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Michelle D Noyes
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | - Nidhi Koundinya
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Cody J Steely
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Andrea Guarracino
- Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Kirill Grigorev
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Thomas J Nicholas
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Michael E Goldberg
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Keisuke K Oshima
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiadong Lin
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter Ebert
- Core Unit Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - W Scott Watkins
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Tiffany Y Leung
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Vincent C T Hanlon
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sean McGee
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Brent S Pedersen
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Hannah C Happ
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Altos Labs, San Diego, CA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel D Chan
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Yanni Wang
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Jordan Knuth
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Gage H Garcia
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Erik Garrison
- Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Peter M Lansdorp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Deborah W Neklason
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Starostecka M, Jeong H, Hasenfeld P, Benito-Garagorri E, Christiansen T, Stober Brasseur C, Gomes Queiroz M, Garcia Montero M, Jechlinger M, Korbel JO. Structural variant and nucleosome occupancy dynamics postchemotherapy in a HER2+ breast cancer organoid model. Proc Natl Acad Sci U S A 2025; 122:e2415475122. [PMID: 39993200 PMCID: PMC11892646 DOI: 10.1073/pnas.2415475122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/08/2025] [Indexed: 02/26/2025] Open
Abstract
The most common chemotherapeutics induce DNA damage to eradicate cancer cells, yet defective DNA repair can propagate mutations, instigating therapy resistance and secondary malignancies. Structural variants (SVs), arising from copy-number-imbalanced and -balanced DNA rearrangements, are a major driver of tumor evolution, yet understudied posttherapy. Here, we adapted single-cell template-strand sequencing (Strand-seq) to a HER2+ breast cancer model to investigate the formation of doxorubicin-induced de novo SVs. We coupled this approach with nucleosome occupancy (NO) measurements obtained from the same single cell to enable simultaneous SV detection and cell-type classification. Using organoids from TetO-CMYC/TetO-Neu/MMTV-rtTA mice modeling HER2+ breast cancer, we generated 459 Strand-seq libraries spanning various tumorigenesis stages, identifying a 7.4-fold increase in large chromosomal alterations post-doxorubicin. Complex DNA rearrangements, deletions, and duplications were prevalent across basal, luminal progenitor (LP), and mature luminal (ML) cells, indicating uniform susceptibility of these cell types to SV formation. Doxorubicin further elevated sister chromatid exchanges (SCEs), indicative of genomic stress persisting posttreatment. Altered nucleosome occupancy levels on distinct cancer-related genes further underscore the broad genomic impact of doxorubicin. The organoid-based system for single-cell multiomics established in this study paves the way for unraveling the most important therapy-associated SV mutational signatures, enabling systematic studies of the effect of therapy on cancer evolution.
Collapse
Affiliation(s)
- Maja Starostecka
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg69117, Germany
- Faculty of Biosciences, Collaboration for joint PhD degree between European Molecular Biology Laboratory and Heidelberg University, Heidelberg69120, Germany
| | - Hyobin Jeong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg69117, Germany
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul03722, Republic of Korea
| | - Patrick Hasenfeld
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg69117, Germany
| | - Eva Benito-Garagorri
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg69117, Germany
| | - Tania Christiansen
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg69117, Germany
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center, Heidelberg69120, Germany
| | | | - Maise Gomes Queiroz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg69117, Germany
| | - Marta Garcia Montero
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg69117, Germany
| | - Martin Jechlinger
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg69117, Germany
- Molecular and Information Technology Institute for Personalized Medicine gGmbH, Heilbronn74076, Germany
| | - Jan O. Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg69117, Germany
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center, Heidelberg69120, Germany
| |
Collapse
|
3
|
Chovanec P, Yin Y. Generalization of the sci-L3 method to achieve high-throughput linear amplification for replication template strand sequencing, genome conformation capture, and the joint profiling of RNA and chromatin accessibility. Nucleic Acids Res 2025; 53:gkaf101. [PMID: 39997216 PMCID: PMC11851118 DOI: 10.1093/nar/gkaf101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/28/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Single-cell combinatorial indexing (sci) methods have addressed major limitations of throughput and cost for many single-cell modalities. With the incorporation of linear amplification and three-level barcoding in our suite of methods called sci-L3, we further addressed the limitations of uniformity in single-cell genome amplification. Here, we build on the generalizability of sci-L3 by extending it to template strand sequencing (sci-L3-Strand-seq), genome conformation capture (sci-L3-Hi-C), and the joint profiling of RNA and chromatin accessibility (sci-L3-RNA/ATAC). We demonstrate the ease of adapting sci-L3 to these new modalities by only requiring a single-step modification of the original protocol. As a proof of principle, we show our ability to detect sister chromatid exchanges, genome compartmentalization, and cell state-specific features in thousands of single cells. We anticipate sci-L3 to be compatible with additional modalities, including DNA methylation (sci-MET) and chromatin-associated factors (CUT&Tag), and ultimately enable a multi-omics readout of them.
Collapse
Affiliation(s)
- Peter Chovanec
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, United States
| | - Yi Yin
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, United States
| |
Collapse
|
4
|
Henglin M, Ghareghani M, Harvey WT, Porubsky D, Koren S, Eichler EE, Ebert P, Marschall T. Graphasing: phasing diploid genome assembly graphs with single-cell strand sequencing. Genome Biol 2024; 25:265. [PMID: 39390579 PMCID: PMC11466045 DOI: 10.1186/s13059-024-03409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Haplotype information is crucial for biomedical and population genetics research. However, current strategies to produce de novo haplotype-resolved assemblies often require either difficult-to-acquire parental data or an intermediate haplotype-collapsed assembly. Here, we present Graphasing, a workflow which synthesizes the global phase signal of Strand-seq with assembly graph topology to produce chromosome-scale de novo haplotypes for diploid genomes. Graphasing readily integrates with any assembly workflow that both outputs an assembly graph and has a haplotype assembly mode. Graphasing performs comparably to trio phasing in contiguity, phasing accuracy, and assembly quality, outperforms Hi-C in phasing accuracy, and generates human assemblies with over 18 chromosome-spanning haplotypes.
Collapse
Affiliation(s)
- Mir Henglin
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maryam Ghareghani
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Peter Ebert
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Core Unit Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Porubsky D, Dashnow H, Sasani TA, Logsdon GA, Hallast P, Noyes MD, Kronenberg ZN, Mokveld T, Koundinya N, Nolan C, Steely CJ, Guarracino A, Dolzhenko E, Harvey WT, Rowell WJ, Grigorev K, Nicholas TJ, Oshima KK, Lin J, Ebert P, Watkins WS, Leung TY, Hanlon VCT, McGee S, Pedersen BS, Goldberg ME, Happ HC, Jeong H, Munson KM, Hoekzema K, Chan DD, Wang Y, Knuth J, Garcia GH, Fanslow C, Lambert C, Lee C, Smith JD, Levy S, Mason CE, Garrison E, Lansdorp PM, Neklason DW, Jorde LB, Quinlan AR, Eberle MA, Eichler EE. A familial, telomere-to-telomere reference for human de novo mutation and recombination from a four-generation pedigree. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606142. [PMID: 39149261 PMCID: PMC11326147 DOI: 10.1101/2024.08.05.606142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Using five complementary short- and long-read sequencing technologies, we phased and assembled >95% of each diploid human genome in a four-generation, 28-member family (CEPH 1463) allowing us to systematically assess de novo mutations (DNMs) and recombination. From this family, we estimate an average of 192 DNMs per generation, including 75.5 de novo single-nucleotide variants (SNVs), 7.4 non-tandem repeat indels, 79.6 de novo indels or structural variants (SVs) originating from tandem repeats, 7.7 centromeric de novo SVs and SNVs, and 12.4 de novo Y chromosome events per generation. STRs and VNTRs are the most mutable with 32 loci exhibiting recurrent mutation through the generations. We accurately assemble 288 centromeres and six Y chromosomes across the generations, documenting de novo SVs, and demonstrate that the DNM rate varies by an order of magnitude depending on repeat content, length, and sequence identity. We show a strong paternal bias (75-81%) for all forms of germline DNM, yet we estimate that 17% of de novo SNVs are postzygotic in origin with no paternal bias. We place all this variation in the context of a high-resolution recombination map (~3.5 kbp breakpoint resolution). We observe a strong maternal recombination bias (1.36 maternal:paternal ratio) with a consistent reduction in the number of crossovers with increasing paternal (r=0.85) and maternal (r=0.65) age. However, we observe no correlation between meiotic crossover locations and de novo SVs, arguing against non-allelic homologous recombination as a predominant mechanism. The use of multiple orthogonal technologies, near-telomere-to-telomere phased genome assemblies, and a multi-generation family to assess transmission has created the most comprehensive, publicly available "truth set" of all classes of genomic variants. The resource can be used to test and benchmark new algorithms and technologies to understand the most fundamental processes underlying human genetic variation.
Collapse
Affiliation(s)
- David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Harriet Dashnow
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas A Sasani
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Present address: Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Michelle D Noyes
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | - Nidhi Koundinya
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Cody J Steely
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Andrea Guarracino
- Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - William J Rowell
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kirill Grigorev
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Core Unit Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas J Nicholas
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Keisuke K Oshima
- Present address: Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiadong Lin
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter Ebert
- Core Unit Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - W Scott Watkins
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Tiffany Y Leung
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | | | - Sean McGee
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Brent S Pedersen
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Michael E Goldberg
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Hannah C Happ
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Present address: Altos Labs, San Diego, CA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel D Chan
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Yanni Wang
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Jordan Knuth
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Gage H Garcia
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Erik Garrison
- Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Deborah W Neklason
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Bai X, Chen Z, Chen K, Wu Z, Wang R, Liu J, Chang L, Wen L, Tang F. Simultaneous de novo calling and phasing of genetic variants at chromosome-scale using NanoStrand-seq. Cell Discov 2024; 10:74. [PMID: 38977679 PMCID: PMC11231365 DOI: 10.1038/s41421-024-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/23/2024] [Indexed: 07/10/2024] Open
Abstract
The successful accomplishment of the first telomere-to-telomere human genome assembly, T2T-CHM13, marked a milestone in achieving completeness of the human reference genome. The upcoming era of genome study will focus on fully phased diploid genome assembly, with an emphasis on genetic differences between individual haplotypes. Most existing sequencing approaches only achieved localized haplotype phasing and relied on additional pedigree information for further whole-chromosome scale phasing. The short-read-based Strand-seq method is able to directly phase single nucleotide polymorphisms (SNPs) at whole-chromosome scale but falls short when it comes to phasing structural variations (SVs). To shed light on this issue, we developed a Nanopore sequencing platform-based Strand-seq approach, which we named NanoStrand-seq. This method allowed for de novo SNP calling with high precision (99.52%) and acheived a superior phasing accuracy (0.02% Hamming error rate) at whole-chromosome scale, a level of performance comparable to Strand-seq for haplotype phasing of the GM12878 genome. Importantly, we demonstrated that NanoStrand-seq can efficiently resolve the MHC locus, a highly polymorphic genomic region. Moreover, NanoStrand-seq enabled independent direct calling and phasing of deletions and insertions at whole-chromosome level; when applied to long genomic regions of SNP homozygosity, it outperformed the strategy that combined Strand-seq with bulk long-read sequencing. Finally, we showed that, like Strand-seq, NanoStrand-seq was also applicable to primary cultured cells. Together, here we provided a novel methodology that enabled interrogation of a full spectrum of haplotype-resolved SNPs and SVs at whole-chromosome scale, with broad applications for species with diploid or even potentially polypoid genomes.
Collapse
Affiliation(s)
- Xiuzhen Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Zonggui Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Kexuan Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Zixin Wu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Rui Wang
- Department of Medicine, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Jun'e Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Liang Chang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education Beijing, Beijing, China
- Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China.
- Changping Laboratory, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
7
|
Henglin M, Ghareghani M, Harvey W, Porubsky D, Koren S, Eichler EE, Ebert P, Marschall T. Phasing Diploid Genome Assembly Graphs with Single-Cell Strand Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580432. [PMID: 38529499 PMCID: PMC10962706 DOI: 10.1101/2024.02.15.580432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Haplotype information is crucial for biomedical and population genetics research. However, current strategies to produce de-novo haplotype-resolved assemblies often require either difficult-to-acquire parental data or an intermediate haplotype-collapsed assembly. Here, we present Graphasing, a workflow which synthesizes the global phase signal of Strand-seq with assembly graph topology to produce chromosome-scale de-novo haplotypes for diploid genomes. Graphasing readily integrates with any assembly workflow that both outputs an assembly graph and has a haplotype assembly mode. Graphasing performs comparably to trio-phasing in contiguity, phasing accuracy, and assembly quality, outperforms Hi-C in phasing accuracy, and generates human assemblies with over 18 chromosome-spanning haplotypes.
Collapse
Affiliation(s)
- Mir Henglin
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Germany
| | - Maryam Ghareghani
- Department of Mathematics and Computer Science, Freie Universität Berlin, Germany
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - William Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Peter Ebert
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Germany
- Core Unit Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
8
|
Grimes K, Jeong H, Amoah A, Xu N, Niemann J, Raeder B, Hasenfeld P, Stober C, Rausch T, Benito E, Jann JC, Nowak D, Emini R, Hoenicka M, Liebold A, Ho A, Shuai S, Geiger H, Sanders AD, Korbel JO. Cell-type-specific consequences of mosaic structural variants in hematopoietic stem and progenitor cells. Nat Genet 2024; 56:1134-1146. [PMID: 38806714 PMCID: PMC11176070 DOI: 10.1038/s41588-024-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
The functional impact and cellular context of mosaic structural variants (mSVs) in normal tissues is understudied. Utilizing Strand-seq, we sequenced 1,133 single-cell genomes from 19 human donors of increasing age, and discovered the heterogeneous mSV landscapes of hematopoietic stem and progenitor cells. While mSVs are continuously acquired throughout life, expanded subclones in our cohort are confined to individuals >60. Cells already harboring mSVs are more likely to acquire additional somatic structural variants, including megabase-scale segmental aneuploidies. Capitalizing on comprehensive single-cell micrococcal nuclease digestion with sequencing reference data, we conducted high-resolution cell-typing for eight hematopoietic stem and progenitor cells. Clonally expanded mSVs disrupt normal cellular function by dysregulating diverse cellular pathways, and enriching for myeloid progenitors. Our findings underscore the contribution of mSVs to the cellular and molecular phenotypes associated with the aging hematopoietic system, and establish a foundation for deciphering the molecular links between mSVs, aging and disease susceptibility in normal tissues.
Collapse
Affiliation(s)
- Karen Grimes
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hyobin Jeong
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Amanda Amoah
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Nuo Xu
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Julian Niemann
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Benjamin Raeder
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Patrick Hasenfeld
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Catherine Stober
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tobias Rausch
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva Benito
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Ramiz Emini
- Department of Cardiothoracic and Vascular Surgery, Ulm University Hospital, Ulm, Germany
| | - Markus Hoenicka
- Department of Cardiothoracic and Vascular Surgery, Ulm University Hospital, Ulm, Germany
| | - Andreas Liebold
- Department of Cardiothoracic and Vascular Surgery, Ulm University Hospital, Ulm, Germany
| | - Anthony Ho
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Shimin Shuai
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Ashley D Sanders
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Jan O Korbel
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Wang Y, Chen Y, Gao J, Xie H, Guo Y, Yang J, Liu J, Chen Z, Li Q, Li M, Ren J, Wen L, Tang F. Mapping crossover events of mouse meiotic recombination by restriction fragment ligation-based Refresh-seq. Cell Discov 2024; 10:26. [PMID: 38443370 PMCID: PMC10915157 DOI: 10.1038/s41421-023-00638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/11/2023] [Indexed: 03/07/2024] Open
Abstract
Single-cell whole-genome sequencing methods have undergone great improvements over the past decade. However, allele dropout, which means the inability to detect both alleles simultaneously in an individual diploid cell, largely restricts the application of these methods particularly for medical applications. Here, we develop a new single-cell whole-genome sequencing method based on third-generation sequencing (TGS) platform named Refresh-seq (restriction fragment ligation-based genome amplification and TGS). It is based on restriction endonuclease cutting and ligation strategy in which two alleles in an individual cell can be cut into equal fragments and tend to be amplified simultaneously. As a new single-cell long-read genome sequencing method, Refresh-seq features much lower allele dropout rate compared with SMOOTH-seq. Furthermore, we apply Refresh-seq to 688 sperm cells and 272 female haploid cells (secondary polar bodies and parthenogenetic oocytes) from F1 hybrid mice. We acquire high-resolution genetic map of mouse meiosis recombination at low sequencing depth and reveal the sexual dimorphism in meiotic crossovers. We also phase the structure variations (deletions and insertions) in sperm cells and female haploid cells with high precision. Refresh-seq shows great performance in screening aneuploid sperm cells and oocytes due to the low allele dropout rate and has great potential for medical applications such as preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Yan Wang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yijun Chen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Junpeng Gao
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haoling Xie
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yuqing Guo
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Jingwei Yang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Jun'e Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Zonggui Chen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Qingqing Li
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Mengyao Li
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Jie Ren
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
10
|
Grochowski CM, Bengtsson JD, Du H, Gandhi M, Lun MY, Mehaffey MG, Park K, Höps W, Benito-Garagorri E, Hasenfeld P, Korbel JO, Mahmoud M, Paulin LF, Jhangiani SN, Muzny DM, Fatih JM, Gibbs RA, Pendleton M, Harrington E, Juul S, Lindstrand A, Sedlazeck FJ, Pehlivan D, Lupski JR, Carvalho CMB. Break-induced replication underlies formation of inverted triplications and generates unexpected diversity in haplotype structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560172. [PMID: 37873367 PMCID: PMC10592851 DOI: 10.1101/2023.10.02.560172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a type of complex genomic rearrangement (CGR) hypothesized to result from replicative repair of DNA due to replication fork collapse. It is often mediated by a pair of inverted low-copy repeats (LCR) followed by iterative template switches resulting in at least two breakpoint junctions in cis . Although it has been identified as an important mutation signature of pathogenicity for genomic disorders and cancer genomes, its architecture remains unresolved and is predicted to display at least four structural variation (SV) haplotypes. Results Here we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the genomic DNA of 24 patients with neurodevelopmental disorders identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted SV haplotypes. Using a combination of short-read genome sequencing (GS), long- read GS, optical genome mapping and StrandSeq the haplotype structure was resolved in 18 samples. This approach refined the point of template switching between inverted LCRs in 4 samples revealing a DNA segment of ∼2.2-5.5 kb of 100% nucleotide similarity. A prediction model was developed to infer the LCR used to mediate the non-allelic homology repair. Conclusions These data provide experimental evidence supporting the hypothesis that inverted LCRs act as a recombinant substrate in replication-based repair mechanisms. Such inverted repeats are particularly relevant for formation of copy-number associated inversions, including the DUP-TRP/INV-DUP structures. Moreover, this type of CGR can result in multiple conformers which contributes to generate diverse SV haplotypes in susceptible loci .
Collapse
|
11
|
Yi D, Nam JW, Jeong H. Toward the functional interpretation of somatic structural variations: bulk- and single-cell approaches. Brief Bioinform 2023; 24:bbad297. [PMID: 37587831 PMCID: PMC10516374 DOI: 10.1093/bib/bbad297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 08/18/2023] Open
Abstract
Structural variants (SVs) are genomic rearrangements that can take many different forms such as copy number alterations, inversions and translocations. During cell development and aging, somatic SVs accumulate in the genome with potentially neutral, deleterious or pathological effects. Generation of somatic SVs is a key mutational process in cancer development and progression. Despite their importance, the detection of somatic SVs is challenging, making them less studied than somatic single-nucleotide variants. In this review, we summarize recent advances in whole-genome sequencing (WGS)-based approaches for detecting somatic SVs at the tissue and single-cell levels and discuss their advantages and limitations. First, we describe the state-of-the-art computational algorithms for somatic SV calling using bulk WGS data and compare the performance of somatic SV detectors in the presence or absence of a matched-normal control. We then discuss the unique features of cutting-edge single-cell-based techniques for analyzing somatic SVs. The advantages and disadvantages of bulk and single-cell approaches are highlighted, along with a discussion of their sensitivity to copy-neutral SVs, usefulness for functional inferences and experimental and computational costs. Finally, computational approaches for linking somatic SVs to their functional readouts, such as those obtained from single-cell transcriptome and epigenome analyses, are illustrated, with a discussion of the promise of these approaches in health and diseases.
Collapse
Affiliation(s)
- Dohun Yi
- Department of Life Science, College of Natural Sciences, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
- Bio-BigData Center, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyobin Jeong
- Department of Life Science, College of Natural Sciences, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
- Bio-BigData Center, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
12
|
Xie H, Li W, Guo Y, Su X, Chen K, Wen L, Tang F. Long-read-based single sperm genome sequencing for chromosome-wide haplotype phasing of both SNPs and SVs. Nucleic Acids Res 2023; 51:8020-8034. [PMID: 37351613 PMCID: PMC10450174 DOI: 10.1093/nar/gkad532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Although localized haploid phasing can be achieved using long read genome sequencing without parental data, reliable chromosome-scale phasing remains a great challenge. Given that sperm is a natural haploid cell, single-sperm genome sequencing can provide a chromosome-wide phase signal. Due to the limitation of read length, current short-read-based single-sperm genome sequencing methods can only achieve SNP haplotyping and come with difficulties in detecting and haplotyping structural variations (SVs) in complex genomic regions. To overcome these limitations, we developed a long-read-based single-sperm genome sequencing method and a corresponding data analysis pipeline that can accurately identify crossover events and chromosomal level aneuploidies in single sperm and efficiently detect SVs within individual sperm cells. Importantly, without parental genome information, our method can accurately conduct de novo phasing of heterozygous SVs as well as SNPs from male individuals at the whole chromosome scale. The accuracy for phasing of SVs was as high as 98.59% using 100 single sperm cells, and the accuracy for phasing of SNPs was as high as 99.95%. Additionally, our method reliably enabled deduction of the repeat expansions of haplotype-resolved STRs/VNTRs in single sperm cells. Our method provides a new opportunity for studying haplotype-related genetics in mammals.
Collapse
Affiliation(s)
- Haoling Xie
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Wen Li
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yuqing Guo
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xinjie Su
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Kexuan Chen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| |
Collapse
|
13
|
Akbari V, Hanlon VC, O’Neill K, Lefebvre L, Schrader KA, Lansdorp PM, Jones SJ. Parent-of-origin detection and chromosome-scale haplotyping using long-read DNA methylation sequencing and Strand-seq. CELL GENOMICS 2023; 3:100233. [PMID: 36777186 PMCID: PMC9903809 DOI: 10.1016/j.xgen.2022.100233] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Hundreds of loci in human genomes have alleles that are methylated differentially according to their parent of origin. These imprinted loci generally show little variation across tissues, individuals, and populations. We show that such loci can be used to distinguish the maternal and paternal homologs for all human autosomes without the need for the parental DNA. We integrate methylation-detecting nanopore sequencing with the long-range phase information in Strand-seq data to determine the parent of origin of chromosome-length haplotypes for both DNA sequence and DNA methylation in five trios with diverse genetic backgrounds. The parent of origin was correctly inferred for all autosomes with an average mismatch error rate of 0.31% for SNVs and 1.89% for insertions or deletions (indels). Because our method can determine whether an inherited disease allele originated from the mother or the father, we predict that it will improve the diagnosis and management of many genetic diseases.
Collapse
Affiliation(s)
- Vahid Akbari
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Kieran O’Neill
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Louis Lefebvre
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kasmintan A. Schrader
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Peter M. Lansdorp
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Steven J.M. Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Abstract
Dense local haplotypes can now readily be extracted from long-read or droplet-based sequence data. However, these methods struggle to combine subchromosomal haplotype blocks into global chromosome-length haplotypes. Strand-seq is a single cell sequencing technique that uses read orientation to capture sparse global phase information by sequencing only one of two DNA strands for each parental homolog. In combination with dense local haplotypes from other technologies, Strand-seq data can be used to obtain complete chromosome-length phase information. In this chapter, we run the R package StrandPhaseR to phase SNVs using publicly available sequence data for sample HG005 of the Genome in a Bottle project.
Collapse
Affiliation(s)
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
| | - Peter M Lansdorp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Hanlon VCT, Lansdorp PM, Guryev V. A survey of current methods to detect and genotype inversions. Hum Mutat 2022; 43:1576-1589. [PMID: 36047337 DOI: 10.1002/humu.24458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Polymorphic inversions are ubiquitous in humans, and they have been linked to both adaptation and disease. Following their discovery in Drosophila more than a century ago, inversions have proved to be more elusive than other structural variants. A wide variety of methods for the detection and genotyping of inversions have recently been developed: multiple techniques based on selective amplification by PCR, short- and long-read sequencing approaches, principal component analysis of small variant haplotypes, template strand sequencing, optical mapping, and various genome assembly methods. Many methods apply complex wet lab protocols or increasingly refined bioinformatic analyses. This review is an attempt to provide a practical summary and comparison of the methods that are in current use, with a focus on metrics such as the maximum size of segmental duplications at inversion breakpoints that each method can tolerate, the size range of inversions that they recover, their throughput, and whether the locations of putative inversions must be known beforehand. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Peter M Lansdorp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
16
|
Hamadeh Z, Hanlon V, Lansdorp PM. Mapping of sister chromatid exchange events and genome alterations in single cells. Methods 2022; 204:64-72. [PMID: 35483548 DOI: 10.1016/j.ymeth.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Mammalian genomes encode over a hundred different helicases, many of which are implicated in the repair of DNA lesions by acting on DNA structures arising during DNA replication, recombination or transcription. Defining the in vivo substrates of such DNA helicases is a major challenge given the large number of helicases in the genome, the breadth of potential substrates in the genome and the degree of genetic pleiotropy among DNA helicases in resolving diverse substrates. Helicases such as WRN, BLM and RECQL5 are implicated in the resolution of error-free recombination events known as sister chromatid exchange events (SCEs). Single cell Strand-seq can be used to map the genomic location of individual SCEs at a resolution that exceeds that of classical cytogenetic techniques by several orders of magnitude. By mapping the genomic locations of SCEs in the absence of different helicases, it should in principle be possible to infer the substrate specificity of specific helicases. Here we describe how the genome can be interrogated for such DNA repair events using single-cell template strand sequencing (Strand-seq) and bioinformatic tools. SCEs and copy-number alterations were mapped to genomic locations at kilobase resolution in haploid KBM7 cells. Strategies, possibilities, and limitations of Strand-seq to study helicase function are illustrated using these cells before and after CRISPR/Cas9 knock out of WRN, BLM and/or RECQL5.
Collapse
Affiliation(s)
- Zeid Hamadeh
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Genome Science and Technology, University of British Columbia, Vancouver, BC, Canada
| | - Vincent Hanlon
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Peter M Lansdorp
- Departments of Medical Genetics and Hematology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|