1
|
Dapper K, Wolpert SM, Schirmer J, Fink S, Gaudrain E, Başkent D, Singer W, Verhulst S, Braun C, Dalhoff E, Rüttiger L, Munk MHJ, Knipper M. Age dependent deficits in speech recognition in quiet and noise are reflected in MGB activity and cochlear onset coding. Neuroimage 2025; 305:120958. [PMID: 39622462 DOI: 10.1016/j.neuroimage.2024.120958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
The slowing and reduction of auditory responses in the brain are recognized side effects of increased pure tone thresholds, impaired speech recognition, and aging. However, it remains controversial whether central slowing is primarily linked to brain processes as atrophy, or is also associated with the slowing of temporal neural processing from the periphery. Here we analyzed electroencephalogram (EEG) responses that most likely reflect medial geniculate body (MGB) responses to passive listening of phonemes in 80 subjects ranging in age from 18 to 76 years, in whom the peripheral auditory responses had been analyzed in detail (Schirmer et al., 2024). We observed that passive listening to vowels and phonemes, specifically designed to rely on either temporal fine structure (TFS) for frequencies below the phase locking limit (<1500 Hz), or on the temporal envelope (TENV) for frequencies above phase locking limit, entrained lower or higher neural EEG responses. While previous views predict speech content, particular in noise to be encoded through TENV, here a decreasing phoneme-induced EEG amplitude over age in response to phonemes relying on TENV coding could also be linked to poorer speech-recognition thresholds in quiet. In addition, increased phoneme-evoked EEG delay could be correlated with elevated extended high-frequency threshold (EHF) for phoneme changes that relied on TFS and TENV coding. This may suggest a role of pure-tone threshold averages (PTA) of EHF for TENV and TFS beyond sound localization that is reflected in likely MGB delays. When speech recognition thresholds were normalized for pure-tone thresholds, however, the EEG amplitudes remained insignificant, and thereby became independent of age. Under these conditions, poor speech recognition in quiet was found together with a delay in EEG response for phonemes that relied on TFS coding, while poor speech recognition in ipsilateral noise was observed as a trend of shortened EEG delays for phonemes that relied on TENV coding. Based on previous analyses performed in these same subjects, elevated thresholds in extended high-frequency regions were linked to cochlear synaptopathy and auditory brainstem delays. Also, independent of hearing loss, poor speech-performing groups in quiet or with ipsilateral noise during TFS or TENV coding could be linked to lower or better outer hair cell performance and delayed or steeper auditory nerve responses at stimulus onset. The amplitude and latency of MGB responses to phonemes requiring TFS or TENV coding, dependent or independent of hearing loss, may thus be a new predictor of poor speech recognition in quiet and ipsilateral noise that links deficits in synchronicity at stimulus onset to neocortical activity. Amplitudes and delays of speech EEG responses to syllables should be reconsidered for future hearing-aid studies.
Collapse
Affiliation(s)
- Konrad Dapper
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany; Department of Biology, Technical University 64287 Darmstadt, Darmstadt, Germany
| | - Stephan M Wolpert
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Jakob Schirmer
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Stefan Fink
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Etienne Gaudrain
- Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Center Hospitalier Le Vinatier -Bâtiment 462-Neurocampus, 95 boulevard Pinel, Lyon, France
| | - Deniz Başkent
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, Groningen 9700RB, the Netherlands
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Sarah Verhulst
- Department of Information Technology, Ghent University, Zwijnaarde 9052, Belgium
| | - Christoph Braun
- MEG-Center, University of Tübingen, Tübingen 72076, Germany; HIH, Hertie Institute for Clinical Brain Research, Tübingen 72076, Germany; CIMeC, Center for Mind and Brain Research, University of Trento, Rovereto 38068, Italy
| | - Ernst Dalhoff
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Matthias H J Munk
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany; Department of Biology, Technical University 64287 Darmstadt, Darmstadt, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany.
| |
Collapse
|
2
|
Schirmer J, Wolpert S, Dapper K, Rühle M, Wertz J, Wouters M, Eldh T, Bader K, Singer W, Gaudrain E, Başkent D, Verhulst S, Braun C, Rüttiger L, Munk MHJ, Dalhoff E, Knipper M. Neural Adaptation at Stimulus Onset and Speed of Neural Processing as Critical Contributors to Speech Comprehension Independent of Hearing Threshold or Age. J Clin Med 2024; 13:2725. [PMID: 38731254 PMCID: PMC11084258 DOI: 10.3390/jcm13092725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Background: It is assumed that speech comprehension deficits in background noise are caused by age-related or acquired hearing loss. Methods: We examined young, middle-aged, and older individuals with and without hearing threshold loss using pure-tone (PT) audiometry, short-pulsed distortion-product otoacoustic emissions (pDPOAEs), auditory brainstem responses (ABRs), auditory steady-state responses (ASSRs), speech comprehension (OLSA), and syllable discrimination in quiet and noise. Results: A noticeable decline of hearing sensitivity in extended high-frequency regions and its influence on low-frequency-induced ABRs was striking. When testing for differences in OLSA thresholds normalized for PT thresholds (PTTs), marked differences in speech comprehension ability exist not only in noise, but also in quiet, and they exist throughout the whole age range investigated. Listeners with poor speech comprehension in quiet exhibited a relatively lower pDPOAE and, thus, cochlear amplifier performance independent of PTT, smaller and delayed ABRs, and lower performance in vowel-phoneme discrimination below phase-locking limits (/o/-/u/). When OLSA was tested in noise, listeners with poor speech comprehension independent of PTT had larger pDPOAEs and, thus, cochlear amplifier performance, larger ASSR amplitudes, and higher uncomfortable loudness levels, all linked with lower performance of vowel-phoneme discrimination above the phase-locking limit (/i/-/y/). Conslusions: This study indicates that listening in noise in humans has a sizable disadvantage in envelope coding when basilar-membrane compression is compromised. Clearly, and in contrast to previous assumptions, both good and poor speech comprehension can exist independently of differences in PTTs and age, a phenomenon that urgently requires improved techniques to diagnose sound processing at stimulus onset in the clinical routine.
Collapse
Affiliation(s)
- Jakob Schirmer
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Stephan Wolpert
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Konrad Dapper
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Moritz Rühle
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Jakob Wertz
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Marjoleen Wouters
- Department of Information Technology, Ghent University, Technologiepark 126, 9052 Zwijnaarde, Belgium; (M.W.); (S.V.)
| | - Therese Eldh
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Katharina Bader
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Etienne Gaudrain
- Lyon Neuroscience Research Center, Centre National de la Recherche Scientifique UMR5292, Inserm U1028, Université Lyon 1, Centre Hospitalier Le Vinatier-Bâtiment 462–Neurocampus, 95 Boulevard Pinel, 69675 Bron CEDEX, France;
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, 9700 RB Groningen, The Netherlands;
| | - Deniz Başkent
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, 9700 RB Groningen, The Netherlands;
| | - Sarah Verhulst
- Department of Information Technology, Ghent University, Technologiepark 126, 9052 Zwijnaarde, Belgium; (M.W.); (S.V.)
| | - Christoph Braun
- Magnetoencephalography-Centre and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany;
- Center for Mind and Brain Research, University of Trento, Palazzo Fedrigotti-corso Bettini 31, 38068 Rovereto, Italy
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Matthias H. J. Munk
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
- Department of Psychiatry & Psychotherapy, University of Tübingen, Calwerstraße 14, 72076 Tübingen, Germany
| | - Ernst Dalhoff
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| |
Collapse
|
3
|
Marchetta P, Dapper K, Hess M, Calis D, Singer W, Wertz J, Fink S, Hage SR, Alam M, Schwabe K, Lukowski R, Bourien J, Puel JL, Jacob MH, Munk MHJ, Land R, Rüttiger L, Knipper M. Dysfunction of specific auditory fibers impacts cortical oscillations, driving an autism phenotype despite near-normal hearing. FASEB J 2024; 38:e23411. [PMID: 38243766 DOI: 10.1096/fj.202301995r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
Autism spectrum disorder is discussed in the context of altered neural oscillations and imbalanced cortical excitation-inhibition of cortical origin. We studied here whether developmental changes in peripheral auditory processing, while preserving basic hearing function, lead to altered cortical oscillations. Local field potentials (LFPs) were recorded from auditory, visual, and prefrontal cortices and the hippocampus of BdnfPax2 KO mice. These mice develop an autism-like behavioral phenotype through deletion of BDNF in Pax2+ interneuron precursors, affecting lower brainstem functions, but not frontal brain regions directly. Evoked LFP responses to behaviorally relevant auditory stimuli were weaker in the auditory cortex of BdnfPax2 KOs, connected to maturation deficits of high-spontaneous rate auditory nerve fibers. This was correlated with enhanced spontaneous and induced LFP power, excitation-inhibition imbalance, and dendritic spine immaturity, mirroring autistic phenotypes. Thus, impairments in peripheral high-spontaneous rate fibers alter spike synchrony and subsequently cortical processing relevant for normal communication and behavior.
Collapse
Affiliation(s)
- Philine Marchetta
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Konrad Dapper
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Morgan Hess
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Dila Calis
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Jakob Wertz
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Stefan Fink
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Steffen R Hage
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Mesbah Alam
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Jerome Bourien
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médical, University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médical, University of Montpellier, Montpellier, France
| | - Michele H Jacob
- Department of Neuroscience, Tufts University School of Medicine, Sackler School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Matthias H J Munk
- Department of Psychiatry & Psychotherapy, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute of Audioneurotechnology, Hannover Medical School, Hannover, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Ginsberg H, Singh R, Bharadwaj HM, Heinz MG. A multi-channel EEG mini-cap can improve reliability for recording auditory brainstem responses in chinchillas. J Neurosci Methods 2023; 398:109954. [PMID: 37625650 PMCID: PMC10560491 DOI: 10.1016/j.jneumeth.2023.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Disabling hearing loss affects nearly 466 million people worldwide (World Health Organization). The auditory brainstem response (ABR) is the most common non-invasive clinical measure of evoked potentials, e.g., as an objective measure for universal newborn hearing screening. In research, the ABR is widely used for estimating hearing thresholds and cochlear synaptopathy in animal models of hearing loss. The ABR contains multiple waves representing neural activity across different peripheral auditory pathway stages, which arise within the first 10 ms after stimulus onset. Multi-channel (e.g., 32 or higher) caps provide robust measures for a wide variety of EEG applications for the study of human hearing. However, translational studies using preclinical animal models typically rely on only a few subdermal electrodes. NEW METHOD We evaluated the feasibility of a 32-channel rodent EEG mini-cap for improving the reliability of ABR measures in chinchillas, a common model of human hearing. RESULTS After confirming initial feasibility, a systematic experimental design tested five potential sources of variability inherent to the mini-cap methodology. We found each source of variance minimally affected mini-cap ABR waveform morphology, thresholds, and wave-1 amplitudes. COMPARISON WITH EXISTING METHOD The mini-cap methodology was statistically more robust and less variable than the conventional subdermal-needle methodology, most notably when analyzing ABR thresholds. Additionally, fewer repetitions were required to produce a robust ABR response when using the mini-cap. CONCLUSIONS These results suggest the EEG mini-cap can improve translational studies of peripheral auditory evoked responses. Future work will evaluate the potential of the mini-cap to improve the reliability of more centrally evoked (e.g., cortical) EEG responses.
Collapse
Affiliation(s)
- Hannah Ginsberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA.
| | - Ravinderjit Singh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA; Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Hari M Bharadwaj
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA; Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, 15260, PA, USA; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, 47907, IN, USA
| | - Michael G Heinz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, 47907, IN, USA
| |
Collapse
|