1
|
Van Den Houte M, Guadagnoli L, Öhman L, Bergstedt A, Johansson B, Simrén M, Strid H, Van Oudenhove L, Svedlund J. Predictors of Symptoms Trajectories in Newly Diagnosed Ulcerative Colitis: A 3-Year Follow-up Cohort Study. J Crohns Colitis 2024; 18:1394-1405. [PMID: 38551078 DOI: 10.1093/ecco-jcc/jjae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Psychological symptoms are associated with poorer ulcerative colitis [UC]-related outcomes. However, the majority of research is cross-sectional. We aimed to identify subgroups based on the longitudinal evolution of GI symptom levels and health-related quality of life [HRQoL], and to disentangle the directionality of effects between GI symptom levels and psychological distress. METHODS Self-reported gastrointestinal [GI] symptom severity, HRQoL, inflammatory biomarkers, and psychological distress were assessed in 98 newly diagnosed UC patients at disease onset and yearly for 3 consecutive years. Latent class growth analysis was used to determine subgroups based on longitudinal trajectories of symptom severity and HRQoL, and baseline predictors of trajectory group membership were determined. Cross-lagged structural equation models were used to disentangle temporal relationships between psychological functioning and symptom severity. RESULTS Patients with higher initial psychological distress had increased probability of maintaining higher levels of diarrhoea and abdominal pain. Conversely, patients with lower initial levels of diarrhoea and abdominal pain had higher chances of maintaining lower levels of psychological distress. Higher levels of C-reactive protein at baseline predicted greater improvements in mental health after anti-inflammatory treatment. Reductions in diarrhoea and abdominal pain preceded reductions in psychological symptoms over time. CONCLUSIONS Baseline psychological distress is predictive of increased GI symptom severity and reduced mental HRQoL over time, suggesting early assessment of psychological symptoms may identify patients who may have worse disease trajectories. Abdominal pain predicted increased psychological distress, but not the other way around. Intervening on abdominal pain may help prevent or reduce future psychological distress.
Collapse
Affiliation(s)
- Maaike Van Den Houte
- Laboratory for Brain-Gut Axis Studies [LaBGAS], Translational Research in Gastrointestinal Disorders [TARGID], Department of Chronic Diseases and Metabolism [CHROMETA], KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Rehabilitation Research Center [REVAL], Hasselt University, Diepenbeek, Belgium
| | - Livia Guadagnoli
- Laboratory for Brain-Gut Axis Studies [LaBGAS], Translational Research in Gastrointestinal Disorders [TARGID], Department of Chronic Diseases and Metabolism [CHROMETA], KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lena Öhman
- Department of Microbiology and Immunology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anders Bergstedt
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy; University of Gothenburg, Gothenburg, Sweden
| | - Berndt Johansson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy; University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Strid
- Department of Internal Medicine, Södra Älvsborgs Hospital, Borås, Sweden
| | - Lukas Van Oudenhove
- Laboratory for Brain-Gut Axis Studies [LaBGAS], Translational Research in Gastrointestinal Disorders [TARGID], Department of Chronic Diseases and Metabolism [CHROMETA], KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Cognitive & Affective Neuroscience Lab [CANLab], Department of Psychological and Brain Sciences, Dartmouth College; Hanover, New Hampshire, USA
| | - Jan Svedlund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy; University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Dicks LMT. Gut Bacteria and Neurotransmitters. Microorganisms 2022; 10:1838. [PMID: 36144440 PMCID: PMC9504309 DOI: 10.3390/microorganisms10091838] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Gut bacteria play an important role in the digestion of food, immune activation, and regulation of entero-endocrine signaling pathways, but also communicate with the central nervous system (CNS) through the production of specific metabolic compounds, e.g., bile acids, short-chain fatty acids (SCFAs), glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), norepinephrine (NE), serotonin (5-HT) and histamine. Afferent vagus nerve (VN) fibers that transport signals from the gastro-intestinal tract (GIT) and gut microbiota to the brain are also linked to receptors in the esophagus, liver, and pancreas. In response to these stimuli, the brain sends signals back to entero-epithelial cells via efferent VN fibers. Fibers of the VN are not in direct contact with the gut wall or intestinal microbiota. Instead, signals reach the gut microbiota via 100 to 500 million neurons from the enteric nervous system (ENS) in the submucosa and myenteric plexus of the gut wall. The modulation, development, and renewal of ENS neurons are controlled by gut microbiota, especially those with the ability to produce and metabolize hormones. Signals generated by the hypothalamus reach the pituitary and adrenal glands and communicate with entero-epithelial cells via the hypothalamic pituitary adrenal axis (HPA). SCFAs produced by gut bacteria adhere to free fatty acid receptors (FFARs) on the surface of intestinal epithelial cells (IECs) and interact with neurons or enter the circulatory system. Gut bacteria alter the synthesis and degradation of neurotransmitters. This review focuses on the effect that gut bacteria have on the production of neurotransmitters and vice versa.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
3
|
Lyu D, Kou G, Li S, Li L, Li B, Zhou R, Yang X, Tian W, Li Y, Zuo X. Digital Spatial Profiling Reveals Functional Shift of Enterochromaffin Cell in Patients With Ulcerative Colitis. Front Cell Dev Biol 2022; 10:841090. [PMID: 35465329 PMCID: PMC9023741 DOI: 10.3389/fcell.2022.841090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
As a major component of the enteroendocrine system, enterochromaffin (EC) cells play a key role in ulcerative colitis (UC). However, the scarcity of EC cells has limited the investigation of their function. In this study, we applied digital spatial profiling to acquire transcriptomic data for EC cells and other epithelial cells from colonoscopic biopsy samples from eight patients with UC and seven healthy controls. Differential expression analysis, gene set enrichment analysis, and weighted gene coexpression network analysis were performed to identify differentially expressed genes and pathways and coexpression networks. Results were validated using an online dataset obtained by single-cell RNA sequencing, along with immunofluorescence staining and quantitative real-time PCR. In healthy participants, 10 genes were significantly enriched in EC cells, functionally concentrated in protein and bioamine synthesis. A coexpression network containing 17 hub genes, including TPH1, CHGA, and GCLC, was identified in EC cells. In patients with UC, EC cells gained increased capacity for protein synthesis, along with novel immunological functions such as antigen processing and presentation, whereas chemical sensation was downregulated. The specific expression of CHGB and RGS2 in EC cells was confirmed by immunofluorescence staining. Our results illuminate the transcriptional signatures of EC cells in the human colon. EC cells’ newly observed functional shift from sensation to secretion and immunity indicates their pivotal role in UC.
Collapse
Affiliation(s)
- Dongping Lyu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Guanjun Kou
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Shandong University, Jinan, China
| | - Bing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Ruchen Zhou
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaoxiao Yang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Wenyu Tian
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Shandong University, Jinan, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Xiuli Zuo,
| |
Collapse
|
4
|
A Novel Pathway of Flavonoids Protecting against Inflammatory Bowel Disease: Modulating Enteroendocrine System. Metabolites 2022; 12:metabo12010031. [PMID: 35050153 PMCID: PMC8777795 DOI: 10.3390/metabo12010031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a comprehensive term for chronic or relapsing inflammatory diseases occurring in the intestinal tract, generally including Crohn's disease (CD) and ulcerative colitis (UC). Presently, the pathogenesis of IBD is unknown, yet multiple factors have been reported to be related with the development of IBD. Flavonoids are phytochemicals with biological activity, which are ubiquitously distributed in edible plants, such as fruits and vegetables. Recent studies have demonstrated impressively that flavonoids have anti-IBD effects through multiple mechanisms. These include anti-inflammatory and antioxidant actions; the preservation of the epithelial barrier integrity, the intestinal immunomodulatory property, and the shaping microbiota composition and function. In addition, a few studies have shown the impact of flavonoids on enterohormones release; nonetheless, there is hardly any work showing the link between flavonoids, enterohormones release and IBD. So far, the interaction between flavonoids, enterohormones and IBD is elucidated for the first time in this review. Furthermore, the inference can be drawn that flavonoids may protect against IBD through modulating enterohormones, such as glucagon-like peptide 1 (GLP-1), GLP-2, dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), ghrelin and cholecystokinin (CCK). In conclusion, this manuscript explores a possible mechanism of flavonoids protecting against IBD.
Collapse
|
5
|
Gacesa R, Vich Vila A, Collij V, Mujagic Z, Kurilshikov A, Voskuil M, Festen E, Wijmenga C, Jonkers D, Dijkstra G, Fu J, Zhernakova A, Imhann F, Weersma R. A combination of fecal calprotectin and human beta-defensin 2 facilitates diagnosis and monitoring of inflammatory bowel disease. Gut Microbes 2021; 13:1943288. [PMID: 34313538 PMCID: PMC8317932 DOI: 10.1080/19490976.2021.1943288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) show a large overlap in clinical presentation, which presents diagnostic challenges. As a consequence, invasive and burdensome endoscopies are often used to distinguish between IBD and IBS. Here, we aimed to develop a noninvasive fecal test that can distinguish between IBD and IBS and reduce the number of endoscopies.We used shotgun metagenomic sequencing to analyze the composition and function of gut microbiota of 169 IBS patients, 447 IBD patients and 1044 population controls and measured fecal Calprotectin (FCal), human beta defensin 2 (HBD2), and chromogranin A (CgA) in these samples. These measurements were used to construct training sets (75% of data) for logistic regression and machine learning models to differentiate IBS from IBD and inactive from active IBD. The results were replicated on test sets (remaining 25% of the data) and microbiome data obtained using 16S sequencing.Fecal HBD2 showed high sensitivity and specificity for differentiating between IBD and IBS (sensitivity = 0.89, specificity = 0.76), while the inclusion of microbiome data with biomarkers (HBD2 and FCal) showed a potential for improvement in predictive power (optimal sensitivity = 0.87, specificity = 0.93). Shotgun sequencing-based models produced comparable results using 16S-sequencing data. HBD2 and FCal were found to have predictive power for IBD disease activity (AUC ≈ 0.7).HBD2 is a novel biomarker for IBD in patients with gastro-intestinal complaints, especially when used in combination with FCal and potentially in combination with gut microbiome data.
Collapse
Affiliation(s)
- R. Gacesa
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - A. Vich Vila
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - V. Collij
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Z. Mujagic
- Maastricht University Medical Center, Division of Gastroenterology-Hepatology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - A. Kurilshikov
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - M.D. Voskuil
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - E.A.M. Festen
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - C. Wijmenga
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - D.M.A.E. Jonkers
- Maastricht University Medical Center, Division of Gastroenterology-Hepatology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - G. Dijkstra
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - J. Fu
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University of Groningen and University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - A. Zhernakova
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - F. Imhann
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands,CONTACT F. Imhann University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - R.K. Weersma
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| |
Collapse
|
6
|
Yu Y, Yang W, Li Y, Cong Y. Enteroendocrine Cells: Sensing Gut Microbiota and Regulating Inflammatory Bowel Diseases. Inflamm Bowel Dis 2020; 26:11-20. [PMID: 31560044 PMCID: PMC7539793 DOI: 10.1093/ibd/izz217] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Host sensing in the gut microbiota has been crucial in the regulation of intestinal homeostasis. Although inflammatory bowel diseases (IBDs), multifactorial chronic inflammatory conditions of the gastrointestinal tract, have been associated with intestinal dysbiosis, the detailed interactions between host and gut microbiota are still not completely understood. Enteroendocrine cells (EECs) represent 1% of the intestinal epithelium. Accumulating evidence indicates that EECs are key sensors of gut microbiota and/or microbial metabolites. They can secrete cytokines and peptide hormones in response to microbiota, either in traditional endocrine regulation or by paracrine impact on proximal tissues and/or cells or via afferent nerve fibers. Enteroendocrine cells also play crucial roles in mucosal immunity, gut barrier function, visceral hyperalgesia, and gastrointestinal (GI) motility, thereby regulating several GI diseases, including IBD. In this review, we will focus on EECs in sensing microbiota, correlating enteroendocrine perturbations with IBD, and the underlying mechanisms.
Collapse
Affiliation(s)
- Yanbo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, P.R. China
- Department of Microbiology and Immunology and Branch, Galveston, Texas, USA
| | - Wenjing Yang
- Department of Microbiology and Immunology and Branch, Galveston, Texas, USA
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Yingzi Cong
- Department of Microbiology and Immunology and Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
7
|
Shulman RJ, Öhman L, Stridsberg M, Cain K, Simrén M, Heitkemper M. Evidence of increased fecal granins in children with irritable bowel syndrome and correlates with symptoms. Neurogastroenterol Motil 2019; 31:e13486. [PMID: 30298961 PMCID: PMC6296885 DOI: 10.1111/nmo.13486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/30/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Granins have been implicated in the pathophysiology of irritable bowel syndrome (IBS) in adults. We sought to determine whether fecal granins are altered in children with IBS and associated with symptoms. METHODS Children (7-12 years of age) with IBS and healthy controls (HC) kept daily pain and stool diaries for 2 weeks. Stool samples were analyzed for chromogranins A and B (CgA, CgB) and secretogranins II and III (SgII, SgIII). Children also completed psychological measures to assess anxiety, depression, somatization, and internalizing symptoms. KEY RESULTS Fecal CgB and SgIII concentrations were higher in all the boys (IBS plus HC, n = 48) than in all the girls (IBS plus HC, n = 75) (P = 0.02 and P = 0.046, respectively). CgA and SgIII were greater in children with IBS (n = 52) vs HC (n = 69) (P = 0.01, P = 0.017, respectively). CgB and SgII did not differ between groups. In children with IBS, the number of pain episodes per week and mean daily pain rating correlated positively with all four granins. The number of stools per day correlated positively with CgB and SgII, and the percent of diarrheal stools (6 or 7 on the Bristol Scale) correlated inversely with all four granins in boys but not in girls. Fecal granins did not correlate with psychological measures. CONCLUSIONS AND INFERENCES As measured by fecal granins, there is evidence of neuroimmune activation in children with IBS. Granins are related to abdominal pain symptoms, stooling frequency, and stool form in children with IBS. Sex influences the fecal concentration of CgB and SgIII.
Collapse
Affiliation(s)
- Robert J. Shulman
- Children’s Nutrition Research Center, Baylor College of Medicine, Department of Pediatrics, Houston, TX
| | - Lena Öhman
- University of Gothenburg, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
8
|
Magnusson MK, Lasson A, Stridsberg M, Isaksson S, Strid H, Öhman L. Faecal secretogranin and chromogranin levels persist over time and are unrelated to disease history and outcome in patients with ulcerative colitis. COGENT MEDICINE 2018. [DOI: 10.1080/2331205x.2018.1484602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Maria K. Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lasson
- Department of Internal Medicine, Södra Älvsborg Hospital, Borås, Sweden
| | - Mats Stridsberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Stefan Isaksson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Strid
- Department of Internal Medicine, Södra Älvsborg Hospital, Borås, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Eissa N, Hussein H, Hendy GN, Bernstein CN, Ghia JE. Chromogranin-A and its derived peptides and their pharmacological effects during intestinal inflammation. Biochem Pharmacol 2018; 152:315-326. [PMID: 29656116 DOI: 10.1016/j.bcp.2018.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the largest endocrine organ that produces a broad range of active peptides. Mucosal changes during inflammation alter the distribution and products of enteroendocrine cells (EECs) that play a role in immune activation and regulation of gut homeostasis by mediating communication between the nervous, endocrine and immune systems. Patients with inflammatory bowel disease (IBD) typically have altered expression of chromogranin (CHG)-A (CHGA), a major soluble protein secreted by EECs that functions as a pro-hormone. CHGA gives rise to several bioactive peptides that have direct or indirect effects on intestinal inflammation. In IBD, CHGA and its derived peptides are correlated with the disease activity. In this review we describe the potential immunomodulatory roles of CHGA and its derived peptides and their clinical relevance during the progression of intestinal inflammation. Targeting CHGA and its derived peptides could be of benefit for the diagnosis and clinical management of IBD patients.
Collapse
Affiliation(s)
- Nour Eissa
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Hayam Hussein
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, USA
| | - Geoffrey N Hendy
- Metabolic Disorders and Complications, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University, Montréal, QC, Canada
| | - Charles N Bernstein
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada; Section of Gastroenterology, Department of Internal Medicine, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jean-Eric Ghia
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada; Section of Gastroenterology, Department of Internal Medicine, College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
10
|
Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol 2018; 11:3-20. [PMID: 28853441 DOI: 10.1038/mi.2017.73] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium must balance efficient absorption of nutrients with partitioning commensals and pathogens from the bodies' largest immune system. If this crucial barrier fails, inappropriate immune responses can result in inflammatory bowel disease or chronic infection. Enteroendocrine cells represent 1% of this epithelium and have classically been studied for their detection of nutrients and release of peptide hormones to mediate digestion. Intriguingly, enteroendocrine cells are the key sensors of microbial metabolites, can release cytokines in response to pathogen associated molecules and peptide hormone receptors are expressed on numerous intestinal immune cells; thus enteroendocrine cells are uniquely equipped to be crucial and novel orchestrators of intestinal inflammation. In this review, we introduce enteroendocrine chemosensory roles, summarize studies correlating enteroendocrine perturbations with intestinal inflammation and describe the mechanistic interactions by which enteroendocrine and mucosal immune cells interact during disease; highlighting this immunoendocrine axis as a key aspect of innate immunity.
Collapse
Affiliation(s)
- J J Worthington
- Lancaster University, Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster, Lancashire, UK
| | - F Reimann
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| | - F M Gribble
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
11
|
El-Salhy M, Solomon T, Hausken T, Gilja OH, Hatlebakk JG. Gastrointestinal neuroendocrine peptides/amines in inflammatory bowel disease. World J Gastroenterol 2017; 23:5068-5085. [PMID: 28811704 PMCID: PMC5537176 DOI: 10.3748/wjg.v23.i28.5068] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/15/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent condition whose etiology is unknown, and it includes ulcerative colitis, Crohn’s disease, and microscopic colitis. These three diseases differ in clinical manifestations, courses, and prognoses. IBD reduces the patients’ quality of life and is an economic burden to both the patients and society. Interactions between the gastrointestinal (GI) neuroendocrine peptides/amines (NEPA) and the immune system are believed to play an important role in the pathophysiology of IBD. Moreover, the interaction between GI NEPA and intestinal microbiota appears to play also a pivotal role in the pathophysiology of IBD. This review summarizes the available data on GI NEPA in IBD, and speculates on their possible role in the pathophysiology and the potential use of this information when developing treatments. GI NEPA serotonin, the neuropeptide Y family, and substance P are proinflammatory, while the chromogranin/secretogranin family, vasoactive intestinal peptide, somatostatin, and ghrelin are anti-inflammatory. Several innate and adaptive immune cells express these NEPA and/or have receptors to them. The GI NEPA are affected in patients with IBD and in animal models of human IBD. The GI NEPA are potentially useful for the diagnosis and follow-up of the activity of IBD, and are candidate targets for treatments of this disease.
Collapse
|
12
|
Massironi S, Zilli A, Cavalcoli F, Conte D, Peracchi M. Chromogranin A and other enteroendocrine markers in inflammatory bowel disease. Neuropeptides 2016; 58:127-134. [PMID: 26804239 DOI: 10.1016/j.npep.2016.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/10/2016] [Accepted: 01/10/2016] [Indexed: 02/08/2023]
Abstract
Changes in the distribution and products of enteroendocrine cells may play a role in immune activation and regulation of gut inflammation. This review aims at critically evaluating the main enteroendocrine markers in inflammatory bowel diseases (IBD). A narrative review was performed by searching inflammatory bowel diseases and enteroendocrine biomarkers in PubMed. Relevant modifications of some enteroendocrine markers, such as Chromogranin A, and their correlation with disease activity have been reported in patients with inflammatory bowel diseases. Even if data about neuroendocrine markers are sometimes contrasting, they may be potentially useful for the diagnosis and clinical management of these patients.
Collapse
Affiliation(s)
- Sara Massironi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Alessandra Zilli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Postgraduate School of Gastroenterology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Federica Cavalcoli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Postgraduate School of Gastroenterology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Dario Conte
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Postgraduate School of Gastroenterology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Maddalena Peracchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Postgraduate School of Gastroenterology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
13
|
Wasinger VC, Yau Y, Duo X, Zeng M, Campbell B, Shin S, Luber R, Redmond D, Leong RWL. Low Mass Blood Peptides Discriminative of Inflammatory Bowel Disease (IBD) Severity: A Quantitative Proteomic Perspective. Mol Cell Proteomics 2015; 15:256-65. [PMID: 26530476 DOI: 10.1074/mcp.m115.055095] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Breakdown of the protective gut barrier releases effector molecules and degradation products into the blood stream making serum and plasma ideal as a diagnostic medium. The enriched low mass proteome is unexplored as a source of differentiators for diagnosing and monitoring inflammatory bowel disease (IBD) activity, that is less invasive than colonoscopy. Differences in the enriched low mass plasma proteome (<25 kDa) were assessed by label-free quantitative mass-spectrometry. A panel of marker candidates were progressed to validation phase and "Tier-2" FDA-level validated quantitative assay. Proteins important in maintaining gut barrier function and homeostasis at the epithelial interface have been quantitated by multiple reaction monitoring in plasma and serum including both inflammatory; rheumatoid arthritis controls, and non-inflammatory healthy controls; ulcerative colitis (UC), and Crohn's disease (CD) patients. Detection by immunoblot confirmed presence at the protein level in plasma. Correlation analysis and receiver operator characteristics were used to report the sensitivity and specificity. Peptides differentiating controls from IBD originate from secreted phosphoprotein 24 (SPP24, p = 0.000086, 0.009); whereas those in remission and healthy can be differentiated in UC by SPP24 (p = 0.00023, 0.001), α-1-microglobulin (AMBP, p = 0.006) and CD by SPP24 (p = 0.019, 0.05). UC and CD can be differentiated by Guanylin (GUC2A, p = 0.001), and Secretogranin-1 (CHGB p = 0.035). Active and quiescent disease can also be differentiated in UC and CD by CHGB (p ≤ 0.023) SPP24 (p ≤ 0.023) and AMBP (UC p = 0.046). Five peptides discriminating IBD activity and severity had very little-to-no correlation to erythrocyte sedimentation rate, C-reactive protein, white cell or platelet counts. Three of these peptides were found to be binding partners to SPP24 protein alongside other known matrix proteins. These proteins have the potential to improve diagnosis and evaluate IBD activity, reducing the need for more invasive techniques. Data are available via ProteomeXchange with identifier PXD002821.
Collapse
Affiliation(s)
- Valerie C Wasinger
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia;
| | - Yunki Yau
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; ¶Gastroenterology Department, Concord Repatriation General Hospital, Hospital Rd, Concord, NSW, Australia
| | - Xizi Duo
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ming Zeng
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Beth Campbell
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Sean Shin
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Raphael Luber
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Diane Redmond
- ‖Department of Gastroenterology, Bankstown-Lidcombe Hospital, Eldridge Rd, Bankstown, NSW, Australia
| | - Rupert W L Leong
- §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia; ¶Gastroenterology Department, Concord Repatriation General Hospital, Hospital Rd, Concord, NSW, Australia; ‖Department of Gastroenterology, Bankstown-Lidcombe Hospital, Eldridge Rd, Bankstown, NSW, Australia
| |
Collapse
|
14
|
Menees SB, Powell C, Kurlander J, Goel A, Chey WD. A meta-analysis of the utility of C-reactive protein, erythrocyte sedimentation rate, fecal calprotectin, and fecal lactoferrin to exclude inflammatory bowel disease in adults with IBS. Am J Gastroenterol 2015; 110:444-54. [PMID: 25732419 DOI: 10.1038/ajg.2015.6] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Irritable bowel syndrome (IBS) is viewed as a diagnosis of exclusion by most providers. The aim of our study was to perform a systematic review and meta-analysis to evaluate the utility of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), fecal calprotectin, and fecal lactoferrin to distinguish between patients with IBS and inflammatory bowel disease (IBD) and healthy controls (HCs). METHODS A systematic online database search was performed. Included studies were prospective, adult, diagnostic cohort studies with any of the four tests. The means and s.d. values of biomarker logarithms were estimated based on studies that gave medians and either confidence intervals for the median, interquartile ranges, or ranges. We used a Naive Bayes approach to estimate the probability of being a HC, having IBS, or having IBD based on the biomarker values. RESULTS Systematic review identified 1,252 citations. After cross-referencing medical subject headings, detailed evaluation identified 140 potentially relevant journal articles/abstracts for CRP, ESR, calprotectin, and lactoferrin of which 4, 4, 8, and 2 fulfilled our inclusion criteria, respectively. None of the biomarkers reliably distinguished between IBS and healthy controls. At a CRP level of ≤0.5 or calprotectin level of ≤40 μg/g, there was a ≤1% probability of having IBD. Individual analysis of ESR and lactoferrin had little clinical utility. CONCLUSION CRP and calprotectin of ≤0.5 or 40, respectively, essentially excludes IBD in patients with IBS symptoms. The addition of CRP and calprotectin to symptom-based criteria may improve the confident diagnosis of IBS.
Collapse
Affiliation(s)
- Stacy B Menees
- Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Corey Powell
- Center for Statistical Consultation and Research (CSCAR), University of Michigan, Ann Arbor, Michigan, USA
| | - Jacob Kurlander
- Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Akash Goel
- Division of Internal Medicine, Columbia University, New York Presbyterian, New York, New York, USA
| | - William D Chey
- Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Zissimopoulos A, Vradelis S, Konialis M, Chadolias D, Bampali A, Constantinidis T, Efremidou E, Kouklakis G. Chromogranin A as a biomarker of disease activity and biologic therapy in inflammatory bowel disease: a prospective observational study. Scand J Gastroenterol 2014; 49:942-9. [PMID: 24897131 DOI: 10.3109/00365521.2014.920910] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To access the correlation of Chromogranin A (CgA) with inflammatory bowel disease (IBD) activity and responsiveness to medical therapy. MATERIAL AND METHODS A prospective observational study was conducted in 56 patients with moderate ulcerative colitis (UC) or Crohn's disease (CD) (UC, n = 29, CD, n = 27), 17 patients with irritable bowel syndrome and predominant diarrhea (IBS-D) and 40 healthy volunteers. IBD patients were treated by biologics (infliximab or adalimumab) or conventional agents (aminosalicylates, thiopurines or methotrexate and steroids) and were classified according to their treatment in two groups. Serum CgA was measured at baseline and 4-week posttreatment period. RESULTS Serum CgA was significantly higher in IBD patients than in those with IBS-D or healthy volunteers (p < 0.01). Furthermore, serum CgA was markedly increased in CD patients than in UC patients (p < 0.01). CgA value was significantly reduced in 'biologic' group (24 IBD patients, UC, n = 15, CD, n = 9) at 4-week posttreatment period (p < 0.01), while 18/24 (72%) patients were already in remission during that time. In contrast, CgA value was significantly increased in the 'conventional' treatment group (32 IBD patients, UC, n = 14, CD, n = 18) between the two visits (p < 0.01), although 22/32 (69%) patients were in remission during the 4-week posttreatment period. CONCLUSION CgA appears to be a reliable marker of disease activity in IBD patients and especially in those who received biologic therapy. IBS-D patients presented normal CgA values.
Collapse
Affiliation(s)
- Athanasios Zissimopoulos
- Deartment of Nuclear Medicine, Democritus University of Thrace , Alexandroupolis, 68100 , Greece
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Diagnosis and monitoring of inflammatory bowel diseases rely on clinical, endoscopic, and radiologic parameters. Inflammatory biomarkers have been investigated as a surrogate marker for endoscopic diagnosis of inflammatory activity. Fecal inflammatory biomarkers such as calprotectin and lactoferrin are direct products of bowel inflammation and provide an accurate and noninvasive diagnostic and monitoring modality for Crohn's disease and ulcerative colitis. This report contains an overview of the currently existing literature pertaining to clinical implications of fecal biomarkers for diagnosis, monitoring, and prediction of outcomes of inflammatory bowel disease.
Collapse
|