1
|
Mercier LJ, McIntosh SJ, Boucher C, Joyce JM, Batycky J, Galarneau JM, Burma JS, Smirl JD, Esser MJ, Schneider KJ, Dukelow SP, Harris AD, Debert CT. Evaluating a 12-week aerobic exercise intervention in adults with persisting post-concussive symptoms. Front Neurol 2024; 15:1482266. [PMID: 39777319 PMCID: PMC11703733 DOI: 10.3389/fneur.2024.1482266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background Although guidelines support aerobic exercise in sub-acute mild traumatic brain injury (mTBI), evidence for adults with persisting post-concussive symptoms (PPCS) after mTBI is lacking. The objective was to evaluate the impact of a sub-symptom threshold aerobic exercise intervention on overall symptom burden and quality of life in adults with PPCS. Methods This prospective cohort study was nested within the ACTBI Trial (Aerobic Exercise for treatment of Chronic symptoms following mild Traumatic Brain Injury). A total of 50 adults with a diagnosis of mTBI, PPCS and exercise intolerance completed a 12-week sub-symptom threshold aerobic exercise intervention either immediately after enrollment (i-AEP group; n = 27) or following 6-weeks of stretching (d-AEP group; n = 23). Data from all participants (n = 50) were included in the combined AEP (c-AEP) group. The primary outcome was symptom burden on the Rivermead Post Concussion Symptoms Questionnaire (RPQ). Secondary outcomes included measures of quality of life and specific post-concussive symptoms (depressive and anxiety symptoms, functional impact of headache, fatigue, sleep, dizziness and exercise tolerance). Heart rate, blood pressure and heart rate variability were also assessed to understand autonomic function response to intervention. Results Participants were a mean (SD) of 42.6 (10.9) years old (74% female) and 25.1 (14.1) months post-mTBI. Following 12-weeks of intervention participants had a significant improvement in symptom burden on the RPQ (i-AEP: mean change = -9.415, p < 0.001; d-AEP: mean change = -3.478, p = 0.034; c-AEP: mean change = -6.446, p < 0.001). Participants also had significant improvement in quality of life (i-AEP: mean change = 9.879, p < 0.001; d-AEP: mean change = 7.994, p < 0.001, c-AEP: mean change = 8.937, p < 0.001), dizziness (i-AEP: mean change = -11.159, p = 0.001; d-AEP: mean change = -6.516, p = 0.019; c-AEP: -8.837, p < 0.001) and exercise tolerance (i-AEP: mean change = 5.987, p < 0.001; d-AEP: mean change = 3.421, p < 0.001; c-AEP: mean change = 4.703, p < 0.001). Headache (mean change = -5.522, p < 0.001) and depressive symptoms (mean change = -3.032, p = 0.001) improved in the i-AEP group. There was no change in measures of autonomic function. Conclusion A 12-week aerobic exercise intervention improves overall symptom burden, quality of life and specific symptom domains in adults with PPCS. Clinicians should consider prescription of progressive, individualized, sub-symptom threshold aerobic exercise for adults with PPCS even if presenting with exercise intolerance and months-to-years of symptoms.
Collapse
Affiliation(s)
- Leah J. Mercier
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
| | - Samantha J. McIntosh
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
| | - Chloe Boucher
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
| | - Julie M. Joyce
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Julia Batycky
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
| | - Jean-Michel Galarneau
- Sport Injury Prevention Research Centre (SIPRC), Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Joel S. Burma
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre (SIPRC), Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Jonathan D. Smirl
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre (SIPRC), Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Michael J. Esser
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Section of Neurology, University of Calgary, Calgary, AB, Canada
| | - Kathryn J. Schneider
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre (SIPRC), Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Sean P. Dukelow
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
| | - Ashley D. Harris
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Chantel T. Debert
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Singh J, Ellingson CJ, Ellingson CA, Shafiq MA, Dech RT, Sirant LW, Dorsch KD, Gruszecki M, Kratzig GP, Neary JP. Acute sport-related concussion alters cardiac contribution to cerebral oxygenation during repeated squat stands. J Sports Sci 2024; 42:2474-2480. [PMID: 39675011 DOI: 10.1080/02640414.2024.2442257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Assessment of cerebral oxygenation during repeated squat stands following an acute sport-related concussion (SRC) has the potential to identify physiological changes following SRC. All varsity university athletes completed a pre-season assessment and 53 were followed up within 5-days of suffering an SRC. Of the 53 participants, 29 had continuous beat-to-beat blood pressure (BP; sampled at 200 hz) collected by finger photoplethysmography, and 53 had right prefrontal cortex oxygenation collected by near-infrared spectroscopy (NIRS; sampled at 10 hz). Participants completed a 5-min repeated squat (10 s) stand (10 s) manoeuvre (0.05 hz). Wavelet transformation was applied to the signals, separating them into smooth muscle cell (0.05 to 0.145 hz), respiratory (0.145 to 0.6 hz) and cardiac (0.6 to 2 hz) frequency intervals, with the 5-min squat stand manoeuvre compared from pre-season to post-concussion. A significant amplitude increase (p < 0.05) in oxyhaemoglobin, total haemoglobin and haemoglobin difference following SRC was found at the cardiac interval. During the squat stand dynamic cerebral autoregulation challenge, this exploratory study found an elevated contribution from the heart to the oxygenation response at the right prefrontal cortex, suggestive of a cardiac compensatory response during concussion. Future research with cerebral blood flow alongside NIRS can provide greater insight to dynamic cerebral autoregulation.
Collapse
Affiliation(s)
- Jyotpal Singh
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Chase J Ellingson
- College of Medicine, University of Saskatchewan Regina Campus, Regina, Canada
| | - Cody A Ellingson
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - M Abdullah Shafiq
- College of Medicine, University of Saskatchewan Regina Campus, Regina, Canada
| | - Ryan T Dech
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Luke W Sirant
- College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Kim D Dorsch
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Marcin Gruszecki
- Department of Radiology Informatics and Statistics, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | | | - J Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| |
Collapse
|
3
|
Neary JP, Singh J, Alcorn J, Laprairie RB, Dehghani P, Mang CS, Bjornson BH, Hadjistavropoulos T, Bardutz HA, Bhagaloo L, Walsh Z, Szafron M, Dorsch KD, Thompson ES. Pharmacological and physiological effects of cannabidiol: a dose escalation, placebo washout study protocol. BMC Neurol 2024; 24:340. [PMID: 39266961 PMCID: PMC11391713 DOI: 10.1186/s12883-024-03847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Cannabinoids such as cannabidiol (CBD) exhibit anti-inflammatory properties and have the potential to act as a therapeutic following mild traumatic brain injury. There is limited evidence available on the pharmacological, physiological and psychological effects of escalating CBD dosages in a healthy, male, university athlete population. Furthermore, no dosing regimen for CBD is available with implications of improving physiological function. This study will develop an optimal CBD dose based on the pharmacokinetic data in contact-sport athletes. The physiological and psychological data will be correlated to the pharmacokinetic data to understand the mechanism(s) associated with an escalating CBD dose. METHODS/DESIGN Forty participants will receive escalating doses of CBD ranging from 5 mg CBD/kg/day to 30 mg CBD/kg/day. The CBD dose is escalated every two weeks in increments of 5 mg CBD/kg/day. Participants will provide blood for pharmacological assessments at each of the 10 visits. Participants will complete a physiological assessment at each of the visits, including assessments of cerebral hemodynamics, blood pressure, electrocardiogram, seismocardiogram, transcranial magnetic stimulation, and salivary analysis for genomic sequencing. Finally, participants will complete a psychological assessment consisting of sleep, anxiety, and pain-related questionnaires. DISCUSSION This study will develop of an optimal CBD dose based on pharmacological, physiological, and psychological properties for future use during contact sport seasons to understand if CBD can help to reduce the frequency of mild traumatic injuries and enhance recovery. TRIAL REGISTRATION Clinicaltrials.gov: NCT06204003.
Collapse
Affiliation(s)
- J Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada.
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada.
| | - Jyotpal Singh
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
- Department of Cardiology, Prairie Vascular Research Inc, Regina, Canada
| | - Jane Alcorn
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Robert B Laprairie
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Payam Dehghani
- Department of Cardiology, Prairie Vascular Research Inc, Regina, Canada
- College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Cameron S Mang
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | | | | | - Holly A Bardutz
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | | | - Zachary Walsh
- Department of Psychology, University of British Columbia, Kelowna, Canada
| | - Michael Szafron
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- School of Public Health - Biostatistics, University of Saskatchewan, Saskatoon, Canada
| | - Kim D Dorsch
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | - Elizabeth S Thompson
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
4
|
Ellingson CJ, Shafiq MA, Ellingson CA, Neary JP, Dehghani P, Singh J. Assessment of cardiovascular functioning following sport-related concussion: A physiological perspective. Auton Neurosci 2024; 252:103160. [PMID: 38428323 DOI: 10.1016/j.autneu.2024.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
There is still much uncertainty surrounding the approach to diagnosing and managing a sport-related concussion (SRC). Neurobiological recovery may extend beyond clinical recovery following SRC, highlighting the need for objective physiological parameters to guide diagnosis and management. With an increased understanding of the connection between the heart and the brain, the utility of assessing cardiovascular functioning following SRC has gained attention. As such, this review focuses on the assessment of cardiovascular parameters in the context of SRC. Although conflicting results have been reported, decreased heart rate variability, blood pressure variability, and systolic (ejection) time, in addition to increased spontaneous baroreflex sensitivity and magnitude of atrial contraction have been shown in acute SRC. We propose that these findings result from the neurometabolic cascade triggered by a concussion and represent alterations in myocardial calcium handling, autonomic dysfunction, and an exaggerated compensatory response that attempts to maintain homeostasis following a SRC. Assessment of the cardiovascular system has the potential to assist in diagnosing and managing SRC, contributing to a more comprehensive and multimodal assessment strategy.
Collapse
Affiliation(s)
- Chase J Ellingson
- College of Medicine, University of Saskatchewan Regina Campus, Regina, SK, Canada; Prairie Vascular Research Inc, Regina, SK, Canada
| | - M Abdullah Shafiq
- College of Medicine, University of Saskatchewan Regina Campus, Regina, SK, Canada; Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Cody A Ellingson
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - J Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | | | - Jyotpal Singh
- Prairie Vascular Research Inc, Regina, SK, Canada; Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada.
| |
Collapse
|
5
|
Ellingson CA, Singh J, Ellingson CJ, Shafiq MA, Sirant LW, Dorsch KD, Gruszecki M, Kratzig GP, Neary JP. Sport-related concussion alters cerebral hemodynamic activity during controlled respiration. J Neurophysiol 2024; 131:556-561. [PMID: 38324895 DOI: 10.1152/jn.00477.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024] Open
Abstract
Sport-related concussion (SRC) is known to disrupt neurohemodynamic activity, cardiac function, and blood pressure (BP) autoregulation. This study aims to observe changes in cerebrovascular and cardiovascular responses during controlled respiration after sustaining an SRC. University varsity athletes (n = 81) completed a preseason physiological assessment and were followed up within 5 days of sustaining an SRC. During preseason and follow-up assessments, participants' continuous beat-to-beat BP was collected by finger photoplethysmography, and right prefrontal cortex oxygenation was collected using near-infrared spectroscopy (NIRS). Participants completed 5 min of seated rest and 5 min of a 6-breaths per minute controlled breathing protocol (5 s inhale and 5 s exhale; 0.10 Hz). Wavelet transformation was applied to the NIRS and BP signals, separating them into respiratory (0.10-0.6 Hz) and cardiac (0.6-2 Hz) frequency intervals. Of the 81 participants, 74 had a usable BP signal, 43 had usable NIRS signals, and 28 had both usable BP and NIRS signals. Wavelet amplitudes were calculated and coherence between NIRS and BP on the 28 participants were assessed. There was a significant (P < 0.05) decrease in oxygenated hemoglobin amplitude from 0.062 to 0.054 Hz and hemoglobin difference amplitude from 0.059 to 0.051 Hz, both at the respiratory (0.10-0.6 Hz) frequency interval, from preseason to acute SRC, respectively. Therefore, during controlled respiration, there was a reduction in intensity at the respiratory band, suggesting a protective, reduced respiratory contribution to cerebral hemodynamic activity following acute SRC.NEW & NOTEWORTHY This study investigated cerebral hemodynamic activity following sport-related concussion. Prefrontal cortex oxygenation was assessed by near-infrared spectroscopy (NIRS) during a controlled breathing protocol. Wavelet transformation of the NIRS signals showed significant decreases in HbO2 and HbD amplitude at the respiratory frequency interval (0.10-0.6 HZ) from preseason baseline to acute concussion. These results suggest a decreased respiratory contribution to cerebral hemodynamic activity following acute concussion.
Collapse
Affiliation(s)
- Cody A Ellingson
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, Saskatchewan, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, Saskatchewan, Canada
| | - Chase J Ellingson
- College of Medicine, University of Saskatchewan, Regina, Saskatchewan, Canada
| | - M Abdullah Shafiq
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, Saskatchewan, Canada
| | - Luke W Sirant
- College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kim D Dorsch
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, Saskatchewan, Canada
| | - Marcin Gruszecki
- Department of Radiology Informatics and Statistics, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
- Department of Biomedical Engineering, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
| | - Gregory P Kratzig
- Department of Psychology, University of Regina, Regina, Saskatchewan, Canada
| | - J Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
6
|
Sirant LW, Singh J, Martin S, Gaul CA, Stuart-Hill L, Candow DG, Mang C, Patrick Neary J. Long-term effects of multiple concussions on prefrontal cortex oxygenation during a hypercapnic challenge in retired contact sport athletes. Brain Res 2024; 1826:148735. [PMID: 38110074 DOI: 10.1016/j.brainres.2023.148735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
This exploratory study aimed to investigate the long-term effects of multiple concussions on prefrontal cortex oxygenation during a five-minute hypercapnic challenge using Near Infrared Spectroscopy (NIRS). 55 physically active retired contact sport male athletes with three or more previous concussions (mTBI) were recruited along with 29 physically active males with no concussions history (CTRL). Participants completed five minutes of seated rest prior to the five-minute hypercapnic challenge (20-second breath-hold, 40-second recovery breathing; five times). NIRS measured right and left side oxygenated (O2Hb), deoxygenated (HHb), total (tHb) haemoglobin, and haemoglobin difference (HbDiff) with all parameters analysed through changes in average maximal and minimal values (ΔMAX), Z-scores, and standard deviations. Right prefrontal cortex HbDiff ΔMAX was significantly higher in the mTBI compared to CTRL (p = 0.045) group. Left prefrontal cortex O2Hb ΔMAX (p = 0.040), HHb Z-Scores (p = 0.008), and HbDiff ΔMAX(p = 0.014) were significantly higher in the mTBI group. Within-group right vs left analyses demonstrated significantly lower left HbDiff ΔMAX (p = 0.048) and HbDiff Z-scores (p = 0.002) in the mTBI group, while the CTRL group had significantly lower left HHb Z-scores (p = 0.003) and left tHb Z-scores (p = 0.042). This study provides preliminary evidence that athletes with a history of three or more concussions may have impaired prefrontal cortex oxygenation parameters during a hypercapnic challenge.
Collapse
Affiliation(s)
- Luke W Sirant
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Jyotpal Singh
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Steve Martin
- University of Victoria, School of Exercise Science, Physical and Health Education, Victoria, BC, Canada
| | - Catherine A Gaul
- University of Victoria, School of Exercise Science, Physical and Health Education, Victoria, BC, Canada
| | - Lynneth Stuart-Hill
- University of Victoria, School of Exercise Science, Physical and Health Education, Victoria, BC, Canada
| | - Darren G Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Cameron Mang
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - J Patrick Neary
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada.
| |
Collapse
|
7
|
Di Credico A, Petri C, Cataldi S, Greco G, Suarez-Arrones L, Izzicupo P. Heart rate variability, recovery and stress analysis of an elite rally driver and co-driver during a competition period. Sci Prog 2024; 107:368504231223034. [PMID: 38179721 PMCID: PMC10771059 DOI: 10.1177/00368504231223034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
To ensure both optimal health and performances, monitoring physiological and psychological states is of main importance for athletes. It is well known that monitoring heart rate variability and using validated questionnaires is useful for monitoring both the health and training status of athletes of different sports. Motorsports such as rally require high levels of physical and mental preparation thus information about psychophysiological status of rally athletes is fundamental. The aim of this study was to assess the autonomic regulation, stress, recovery conditions of one driver and one co-driver competing at the Italian National Rally Championship during their competition period. Heart rate variability parameters, acute recovery and stress states were assessed the day before, during the two days of race and the day following the races. Results showed that driver and co-driver had a sharp decrease of mean RR intervals, root mean square of successive differences between normal heartbeats, and standard deviation of the N-N interval during race days, while the stress index showed the inverse trend, and this behaviour was clearly visible in the Poincaré plots and power spectrum density graphs. The acute recovery and stress states questionnaire showed significant differences in recovery and stress scoring for the driver but not for the co-driver, although the trends were similar. This study describes the psychophysiological demands of a rally competition period suggesting that a daily evaluation of heart rate variability, recovery, stress states is useful for monitoring health status in rally athletes and could be implemented to make decision about training and recovery strategies.
Collapse
Affiliation(s)
- Andrea Di Credico
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Cristian Petri
- Department of Sports and Computer Science, Section of Physical Education and Sports, Universidad Pablo de Olavide, Seville, Spain
| | - Stefania Cataldi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of the Study of Bari, Bari, Italy
| | - Gianpiero Greco
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of the Study of Bari, Bari, Italy
| | - Luis Suarez-Arrones
- Department of Sports and Computer Science, Section of Physical Education and Sports, Universidad Pablo de Olavide, Seville, Spain
| | - Pascal Izzicupo
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
8
|
Shafiq MA, Ellingson CA, Krätzig GP, Dorsch KD, Neary JP, Singh J. Differences in Heart Rate Variability and Baroreflex Sensitivity between Male and Female Athletes. J Clin Med 2023; 12:3916. [PMID: 37373610 DOI: 10.3390/jcm12123916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Heart rate variability (HRV), systolic blood pressure variability (BPV), and spontaneous baroreflex sensitivity (BRS) are indirect and approximate measures of autonomic regulation of the cardiovascular system. Studies have shown differences in HRV and BRS between males and females; however, no study has observed differences in BPV, HRV, or BRS between male and female athletes. One hundred males (age 21.2 ± 2.1 y; BMI 27.4 ± 4.5 kg/m2) and sixty-five females (age: 19.7 ± 1.6 y; BMI 22.7 ± 2.2 kg/m2) were assessed during the pre-season baseline. We collected resting beat-to-beat blood pressure and R-R intervals using finger photoplethysmography and a 3-lead electrocardiogram, respectively. Participants underwent a controlled slow breathing protocol (six breaths/minute: 5 s inhale, 5 s exhale) for 5 min. Spectral and linear analysis was conducted on blood pressure and ECG data. Regression curves were fitted to the blood pressure and R-R signals, with the slopes providing the BRS parameters. Male athletes had significantly (p < 0.05) lower mean heart rate, RR interval SD2/SD1, HRV % low-frequency, and higher BP high-frequency power during controlled respiration. No differences were found in any BRS parameters. HRV and BPV responses to a slow breathing protocol differed between male and female athletes; however, BRS responses did not.
Collapse
Affiliation(s)
- M Abdullah Shafiq
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada
| | - Cody A Ellingson
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada
| | - Gregory P Krätzig
- Department of Psychology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Kim D Dorsch
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada
| | - J Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada
| |
Collapse
|
9
|
Neary JP, Singh J, Sirant LW, Gaul CA, Martin S, Stuart-Hill L, Candow DG, Mang CS, Kratzig GP. History of Brain Injury Alters Cerebral Haemodynamic Oscillations with Cardiac Influence. Brain Sci 2022; 12:1443. [PMID: 36358369 PMCID: PMC9688194 DOI: 10.3390/brainsci12111443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2024] Open
Abstract
(1) Background: Cerebral autoregulation is altered during acute mild traumatic brain injury, or concussion. However, it is unknown how a history of concussion can impact cerebral haemodynamic activity during a task that elicits an autoregulatory response. (2) Methods: We assessed cerebral haemodynamic activity in those with a history of three or more concussions. The study included 44 retired athletes with concussion history and 25 control participants. We recorded participants' relative changes in right and left pre-frontal cortex oxygenation collected by near-infrared spectroscopy and continuous beat-to-beat blood pressure measured by finger photoplethysmography. Participants completed a 5-min seated rest followed by a 5-min repeated squat (10-s) stand (10-s) maneuver (0.05 Hz) to elicit a cerebral autoregulatory response. Wavelet transformation was applied to the collected signals, allowing separation into cardiac interval I (0.6 to 2 Hz), respiratory interval II (0.145 to 0.6 Hz), and smooth muscle cell interval III (0.052 to 0.145 Hz). (3) Results: Significant increases at cardiac interval I were found for the wavelet amplitude of oxy-haemoglobin and haemoglobin difference at the right pre-frontal cortex. No significant difference was found at the left pre-frontal cortex or the blood pressure wavelet amplitudes. (4) Conclusions: Contributions from cardiac activity to the pre-frontal cortex oxygenation are elevated when eliciting dynamic cerebral autoregulation in those with a history of three or more concussions.
Collapse
Affiliation(s)
- J. Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Luke W. Sirant
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Catherine A. Gaul
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Steve Martin
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Lynneth Stuart-Hill
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Darren G. Candow
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Cameron S. Mang
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Gregory P. Kratzig
- Department of Psychology, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
10
|
Ellingson CJ, Singh J, Ellingson CA, Sirant LW, Krätzig GP, Dorsch KD, Piskorski J, Neary JP. Alterations in Baroreflex Sensitivity and Blood Pressure Variability Following Sport-Related Concussion. Life (Basel) 2022; 12:life12091400. [PMID: 36143435 PMCID: PMC9500648 DOI: 10.3390/life12091400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Current methods to diagnose concussions are subjective and difficult to confirm. A variety of physiological biomarkers have been reported, but with conflicting results. This study assessed heart rate variability (HRV), spontaneous baroreflex sensitivity (BRS), and systolic blood pressure variability (BPV) in concussed athletes. The assessment consisted of a 5-min seated rest followed by a 5-min (0.1 Hz) controlled breathing protocol. Thirty participants completed baseline assessments. The protocol was repeated during the post-injury acute phase (days one to five). Total (p = 0.02) and low-frequency (p = 0.009) BPV spectral power were significantly decreased during the acute phase of concussion. BRS down-sequence (p = 0.036) and up-sequence (p = 0.05) were significantly increased in the acute phase of concussion, with a trend towards an increased BRS pooled (p = 0.06). Significant decreases in HRV were also found. Acute concussion resulted in altered BRS and BPV dynamics compared to baseline. These findings highlight objective physiological parameters that could aid concussion diagnosis and return-to-play protocols.
Collapse
Affiliation(s)
- Chase J. Ellingson
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Cody A. Ellingson
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Luke W. Sirant
- College of Medicine, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Gregory P. Krätzig
- Department of Psychology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Kim D. Dorsch
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jaroslaw Piskorski
- Institute of Physics, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland
| | - J. Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
- Correspondence: ; Tel.: +1-306-585-4844
| |
Collapse
|