1
|
Mohammedsalih KM, Hassan SA, Juma FR, Saeed SI, Bashar A, von Samson-Himmelstjerna G, Krücken J. Comparative assessment of Mini-FLOTAC, McMaster and semi-quantitative flotation for helminth egg examination in camel faeces. Parasit Vectors 2025; 18:5. [PMID: 39800725 PMCID: PMC11726973 DOI: 10.1186/s13071-024-06637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Faecal egg counts (FECs) are essential for diagnosing helminth infections and guiding treatment decisions. For camels, no evaluations of coproscopic methods regarding precision, sensitivity and correlation between individual and pooled faecal samples are currently available. METHODS Here, 410 camel faecal samples were collected in 2022 from South Darfur State, Sudan, and analysed to compare the semi-quantitative flotation, McMaster and Mini-FLOTAC methods in terms of precision, sensitivity, inter-rater reliability and helminth egg count correlations, as well as the effects of pooling samples. Six samples were used to assess precision for McMaster and Mini-FLOTAC, while the remaining 404 samples were evaluated for sensitivity, inter-rater reliability and egg count correlations. Of these, 80 samples were used in pooling experiments. RESULTS Six analyses of each sample (n = 6) using the McMaster and Mini-FLOTAC methods revealed no significant difference in the coefficient of variation between the two. For strongyle eggs, 48.8%, 52.7% and 68.6% were positive for McMaster, semi-quantitative flotation and Mini-FLOTAC, respectively. The sensitivity of the three methods showed only minimal improvement when three egg counts were performed on the same sample. McMaster and Mini-FLOTAC had similar sensitivity for Strongyloides spp. (3.5% frequency), while it was lower for semi-quantitative flotation at 2.5%. Mini-FLOTAC was more sensitive for Moniezia spp., detecting 7.7% of positives compared with 4.5% for semi-quantitative flotation and 2.2% for McMaster. For Trichuris spp., frequencies were 0.3% with Mini-FLOTAC, 0.7% with McMaster and 1.7% with semi-quantitative flotation. Mini-FLOTAC also detected higher strongyle eggs per gram (EPG) of faeces (mean 537.4) compared with McMaster (330.1). More samples exceeded treatment thresholds with Mini-FLOTAC, with 28.5% of animals having EPG ≥ 200 compared with 19.3% for McMaster, while 19.1% showed EPG ≥ 500 with Mini-FLOTAC compared with 12.1% with McMaster. There was no significant correlation between individual and pooled strongyle FECs, as indicated by Pearson correlation coefficients of r ≥ 0.368 (P ≥ 0.113) and Spearman correlation. CONCLUSIONS Mini-FLOTAC outperformed semi-quantitative flotation and McMaster in diagnosing helminth infections in camels, offering greater sensitivity and detecting higher EPGs, particularly for strongyles, Strongyloides spp. and Moniezia spp. Thus, treatment decisions based on Mini-FLOTAC EPGs will lead to more treatments.
Collapse
Affiliation(s)
- Khalid M Mohammedsalih
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163, Berlin, Germany
- Central Research Laboratory of Darfur Universities, Mousseh District, 63311, Nyala, Sudan
- Faculty of Veterinary Science, University of Nyala, Mousseh District, 63311, Nyala, Sudan
| | - Salma A Hassan
- Faculty of Veterinary Science, University of Nyala, Mousseh District, 63311, Nyala, Sudan
| | - Fathel-Rahman Juma
- Central Research Laboratory of Darfur Universities, Mousseh District, 63311, Nyala, Sudan
- Faculty of Veterinary Science, University of Nyala, Mousseh District, 63311, Nyala, Sudan
| | - Shamsaldeen I Saeed
- Faculty of Veterinary Science, University of Nyala, Mousseh District, 63311, Nyala, Sudan
| | - Ahmed Bashar
- Faculty of Veterinary Science, University of Nyala, Mousseh District, 63311, Nyala, Sudan
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163, Berlin, Germany.
| |
Collapse
|
2
|
Castle TG, Britton L, Ripley B, Ubelhor E, Slusarewicz P. Evaluation of Parasight All-in-One system for the automated enumeration of helminth ova in canine and feline feces. Parasit Vectors 2024; 17:275. [PMID: 38937854 PMCID: PMC11210176 DOI: 10.1186/s13071-024-06351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Digital imaging combined with deep-learning-based computational image analysis is a growing area in medical diagnostics, including parasitology, where a number of automated analytical devices have been developed and are available for use in clinical practice. METHODS The performance of Parasight All-in-One (AIO), a second-generation device, was evaluated by comparing it to a well-accepted research method (mini-FLOTAC) and to another commercially available test (Imagyst). Fifty-nine canine and feline infected fecal specimens were quantitatively analyzed by all three methods. Since some samples were positive for more than one parasite, the dataset consisted of 48 specimens positive for Ancylostoma spp., 13 for Toxocara spp. and 23 for Trichuris spp. RESULTS The magnitude of Parasight AIO counts correlated well with those of mini-FLOTAC but not with those of Imagyst. Parasight AIO counted approximately 3.5-fold more ova of Ancylostoma spp. and Trichuris spp. and 4.6-fold more ova of Toxocara spp. than the mini-FLOTAC, and counted 27.9-, 17.1- and 10.2-fold more of these same ova than Imagyst, respectively. These differences translated into differences between the test sensitivities at low egg count levels (< 50 eggs/g), with Parasight AIO > mini-FLOTAC > Imagyst. At higher egg counts Parasight AIO and mini-FLOTAC performed with comparable precision (which was significantly higher that than Imagyst), whereas at lower counts (> 30 eggs/g) Parasight was more precise than both mini-FLOTAC and Imagyst, while the latter two methods did not significantly differ from each other. CONCLUSIONS In general, Parasight AIO analyses were both more precise and sensitive than mini-FLOTAC and Imagyst and quantitatively correlated well with mini-FLOTAC. While Parasight AIO produced lower raw counts in eggs-per-gram than mini-FLOTAC, these could be corrected using the data generated from these correlations.
Collapse
Affiliation(s)
| | - Leah Britton
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY, 40505, USA
| | - Britt Ripley
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY, 40505, USA
| | - Elizabeth Ubelhor
- Lexington Humane Society, 1600 Old Frankfort Pike, Lexington, KY, 40504, USA
| | - Paul Slusarewicz
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY, 40505, USA.
| |
Collapse
|
3
|
Tietze E, Bellusci A, Cañal V, Cringoli G, Beltrame MO. Gastrointestinal parasite assemblages from the wild rodent capybara ( Hydrochoerus hydrochaeris) inhabiting a natural protected area from Argentina. J Helminthol 2023; 97:e97. [PMID: 38088355 DOI: 10.1017/s0022149x23000767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Knowledge about parasitic diseases of wildlife will help us to understand the dynamics of parasites and their effects on host populations. The capybara (Hydrochoerus hydrochaeris) is the largest living rodent in the world, and its distribution is associated with the presence of tropical and subtropical wetlands in South America. The Los Padres Lake Integral Reserve (LPLIR) is an important conservation zone in the pampean region of Argentina. One of the emblematic species found within the reserve is the capybara. The objective of this study was to determine the gastrointestinal parasites present in wild capybaras of the LPLIR and to compare different coprological methodologies. Free-ranging capybara fresh feces from 57 individuals were randomly collected from the area of LPLIR in the summer of 2022. Three different techniques were applied: spontaneous sedimentation technique (SS), INTA modified McMaster technique (MM), and Mini-FLOTAC (MF) technique. Fifty-six samples from all samples analysed (56/57, 98%) were found to be positive for gastrointestinal parasites. Two species of Strongylida, Protozoophaga obesa, Echinocoleus hydrochaeris, one unidentified nematode, one unidentified spirurid, and at least two morphotypes of Eimeria spp. oocysts were recorded. There were found significant differences in the proportion of positive samples and in richness by technique, but no significant differences were found in parasite counting. In conclusion, the choice of methodology depends on the specific objectives of the study. This is the first parasitological study of capybaras from the LPLIR and represents an exploration of parasite communities present in these wild rodents at their southernmost distribution.
Collapse
Affiliation(s)
- E Tietze
- Paleoparasitología. Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, UNMdP-CONICET, Juan B. Justo 2250, CP 7600, Mar del Plata, Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - A Bellusci
- Paleoparasitología. Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, UNMdP-CONICET, Juan B. Justo 2250, CP 7600, Mar del Plata, Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - V Cañal
- Paleoparasitología. Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, UNMdP-CONICET, Juan B. Justo 2250, CP 7600, Mar del Plata, Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - G Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II of Naples, Naples, Italy
| | - M O Beltrame
- Paleoparasitología. Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, UNMdP-CONICET, Juan B. Justo 2250, CP 7600, Mar del Plata, Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|