1
|
Cripps SM, Marshall SA, Mattiske DM, Ingham RY, Pask AJ. Estrogenic endocrine disruptor exposure directly impacts erectile function. Commun Biol 2024; 7:403. [PMID: 38565966 PMCID: PMC10987563 DOI: 10.1038/s42003-024-06048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Erectile dysfunction (ED) is an extremely prevalent condition which significantly impacts quality of life. The rapid increase of ED in recent decades suggests the existence of unidentified environmental risk factors contributing to this condition. Endocrine Disrupting Chemicals (EDCs) are one likely candidate, given that development and function of the erectile tissues are hormonally dependent. We use the estrogenic-EDC diethylstilbestrol (DES) to model how widespread estrogenic-EDC exposure may impact erectile function in humans. Here we show that male mice chronically exposed to DES exhibit abnormal contractility of the erectile tissue, indicative of ED. The treatment did not affect systemic testosterone production yet significantly increased estrogen receptor α (Esr1) expression in the primary erectile tissue, suggesting EDCs directly impact erectile function. In response, we isolated the erectile tissue from mice and briefly incubated them with the estrogenic-EDCs DES or genistein (a phytoestrogen). These acute-direct exposures similarly caused a significant reduction in erectile tissue contractility, again indicative of ED. Overall, these findings demonstrate a direct link between estrogenic EDCs and erectile dysfunction and show that both chronic and acute estrogenic exposures are likely risk factors for this condition.
Collapse
Affiliation(s)
- Samuel M Cripps
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Sarah A Marshall
- The Ritchie Centre, Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Rachel Y Ingham
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
2
|
Zaky DA, Sayed RH, Mohamed YS. Liraglutide limits the immunogenic cell death-mediated ROS propagation and PI3K/AKT inactivation after doxorubicin-induced gonadotoxicity in rats: Involvement of the canonical Hedgehog trajectory. Int Immunopharmacol 2023; 119:110212. [PMID: 37094542 DOI: 10.1016/j.intimp.2023.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Chemotherapy-accompanied reproductive dysfunction has lately begun to draw the attention of the scientific community owing to the irreversible impact on the patient's quality of life. Here we tended to investigate the potential role of liraglutide (LRG) in modulating the canonical Hedgehog (Hh) signaling in doxorubicin (DXR)-induced gonadotoxicity in rats. Female virgin Wistar rats were divided into 4 groups; control, DXR-treated (25 mg/kg, single i.p. injection), LRG-treated (150 μg/Kg/day, s.c) and itraconazole (ITC; 150 mg/kg/day, p.o)-pretreated group, as the Hh pathway inhibitor. Treatment with LRG potentiated the PI3K/AKT/p-GSK3β cascade and relieved the oxidative burden-induced by the DXR-driven immunogenic cell death (ICD). LRG also upregulated the expression of the Desert hedgehog ligand (DHh) and the patched-1 (PTCH1) receptor and augmented the protein level of Indian hedgehog (IHh) ligand, Gli1 and cyclin-D1 (CD1). Besides, hypertranscription of IHh, DHh, Ptch1, Smo, Gli1/2 and CD1 genes along with a transcriptional recession of Gli3 gene were reported in LRG-treated group. ITC pre-administration partially abrogated this positive effect of LRG, proving the implication of the examined pathway. Microscopically, LRG ameliorated the follicular atresia noticed in the DXR group; effect that was, at least partially, declined by ITC pre-treatment. These findings end to a conclusion that LRG treatment might hinder the DXR-associated reproductive toxicity, resultant from ROS generated by the cells undergoing ICD, and trigger follicular growth and repair by the PI3K/AKT- dependent switching-on of the canonical Hh pathway.
Collapse
Affiliation(s)
- Doaa A Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Yasmin S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Dilower I, Niloy AJ, Kumar V, Kothari A, Lee EB, Rumi MAK. Hedgehog Signaling in Gonadal Development and Function. Cells 2023; 12:358. [PMID: 36766700 PMCID: PMC9913308 DOI: 10.3390/cells12030358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Three distinct hedgehog (HH) molecules, (sonic, desert, and indian), two HH receptors (PTCH1 and PTCH2), a membrane bound activator (SMO), and downstream three transcription factors (GLI1, GLI2, and GLI3) are the major components of the HH signaling. These signaling molecules were initially identified in Drosophila melanogaster. Later, it has been found that the HH system is highly conserved across species and essential for organogenesis. HH signaling pathways play key roles in the development of the brain, face, skeleton, musculature, lungs, and gastrointestinal tract. While the sonic HH (SHH) pathway plays a major role in the development of the central nervous system, the desert HH (DHH) regulates the development of the gonads, and the indian HH (IHH) acts on the development of bones and joints. There are also overlapping roles among the HH molecules. In addition to the developmental role of HH signaling in embryonic life, the pathways possess vital physiological roles in testes and ovaries during adult life. Disruption of DHH and/or IHH signaling results in ineffective gonadal steroidogenesis and gametogenesis. While DHH regulates the male gonadal functions, ovarian functions are regulated by both DHH and IHH. This review article focuses on the roles of HH signaling in gonadal development and reproductive functions with an emphasis on ovarian functions. We have acknowledged the original research work that initially reported the findings and discussed the subsequent studies that have further analyzed the role of HH signaling in testes and ovaries.
Collapse
Affiliation(s)
| | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Pryzhkova MV, Boers R, Jordan PW. Modeling Human Gonad Development in Organoids. Tissue Eng Regen Med 2022; 19:1185-1206. [PMID: 36350469 PMCID: PMC9679106 DOI: 10.1007/s13770-022-00492-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Our learning about human reproductive development is greatly hampered due to the absence of an adequate model. Animal studies cannot truthfully recapitulate human developmental processes, and studies of human fetal tissues are limited by their availability and ethical restrictions. Innovative three-dimensional (3D) organoid technology utilizing human pluripotent stem cells (hPSCs) offered a new approach to study tissue and organ development in vitro. However, a system for modeling human gonad development has not been established, thus, limiting our ability to study causes of infertility. METHODS In our study we utilized the 3D hPSC organoid culture in mini-spin bioreactors. Relying on intrinsic self-organizing and differentiation capabilities of stem cells, we explored whether organoids could mimic the development of human embryonic and fetal gonad. RESULTS We have developed a simple, bioreactor-based organoid system for modeling early human gonad development. Male hPSC-derived organoids follow the embryonic gonad developmental trajectory and differentiate into multipotent progenitors, which further specialize into testicular supporting and interstitial cells. We demonstrated functional activity of the generated cell types by analyzing the expression of cell type-specific markers. Furthermore, the specification of gonadal progenitors in organoid culture was accompanied by the characteristic architectural tissue organization. CONCLUSION This organoid system opens the opportunity for detailed studies of human gonad and germ cell development that can advance our understanding of sex development disorders. Implementation of human gonad organoid technology could be extended to modeling causes of infertility and regenerative medicine applications.
Collapse
Affiliation(s)
- Marina V Pryzhkova
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA.
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Romina Boers
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA
- Department of Molecular Cell Biology and Immunology, Amsterdam Universitair Medische Centra, 1117 HV, Amsterdam, The Netherlands
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA.
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
5
|
Svingen T. Editorial: New mechanistic insight into perinatal origins of reproductive disorders caused by chemical exposures. Curr Res Toxicol 2022; 3:100089. [PMID: 36248613 PMCID: PMC9563613 DOI: 10.1016/j.crtox.2022.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
Introducing a Special Issue on mechanism of reproductive disorders in mammals originating from exposure to environmental chemicals during perinatal life.
Collapse
|
6
|
Morgan MB, Ross J, Ellwanger J, Phrommala RM, Youngblood H, Qualley D, Williams J. Sea Anemones Responding to Sex Hormones, Oxybenzone, and Benzyl Butyl Phthalate: Transcriptional Profiling and in Silico Modelling Provide Clues to Decipher Endocrine Disruption in Cnidarians. Front Genet 2022; 12:793306. [PMID: 35087572 PMCID: PMC8787064 DOI: 10.3389/fgene.2021.793306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/24/2021] [Indexed: 01/09/2023] Open
Abstract
Endocrine disruption is suspected in cnidarians, but questions remain how occurs. Steroid sex hormones are detected in corals and sea anemones even though these animals do not have estrogen receptors and their repertoire of steroidogenic enzymes appears to be incomplete. Pathways associated with sex hormone biosynthesis and sterol signaling are an understudied area in cnidarian biology. The objective of this study was to identify a suite of genes that can be linked to exposure of endocrine disruptors. Exaiptasia diaphana were exposed to nominal 20ppb concentrations of estradiol (E2), testosterone (T), cholesterol, oxybenzone (BP-3), or benzyl butyl phthalate (BBP) for 4 h. Eleven genes of interest (GOIs) were chosen from a previously generated EST library. The GOIs are 17β-hydroxysteroid dehydrogenases type 14 (17β HSD14) and type 12 (17β HSD12), Niemann-Pick C type 2 (NPC2), Equistatin (EI), Complement component C3 (C3), Cathepsin L (CTSL), Patched domain-containing protein 3 (PTCH3), Smoothened (SMO), Desert Hedgehog (DHH), Zinc finger protein GLI2 (GLI2), and Vitellogenin (VTG). These GOIs were selected because of functional associations with steroid hormone biosynthesis; cholesterol binding/transport; immunity; phagocytosis; or Hedgehog signaling. Quantitative Real-Time PCR quantified expression of GOIs. In silico modelling utilized protein structures from Protein Data Bank as well as creating protein structures with SWISS-MODEL. Results show transcription of steroidogenic enzymes, and cholesterol binding/transport proteins have similar transcription profiles for E2, T, and cholesterol treatments, but different profiles when BP-3 or BBP is present. C3 expression can differentiate between exposures to BP-3 versus BBP as well as exposure to cholesterol versus sex hormones. In silico modelling revealed all ligands (E2, T, cholesterol, BBP, and BP-3) have favorable binding affinities with 17β HSD14, 17β HSD12, NPC2, SMO, and PTCH proteins. VTG expression was down-regulated in the sterol treatments but up-regulated in BP-3 and BBP treatments. In summary, these eleven GOIs collectively generate unique transcriptional profiles capable of discriminating between the five chemical exposures used in this investigation. This suite of GOIs are candidate biomarkers for detecting transcriptional changes in steroidogenesis, gametogenesis, sterol transport, and Hedgehog signaling. Detection of disruptions in these pathways offers new insight into endocrine disruption in cnidarians.
Collapse
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - James Ross
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States.,Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph Ellwanger
- Department of Biology, Berry College, Mount Berry, GA, United States
| | | | - Hannah Youngblood
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States.,Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Dominic Qualley
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Jacob Williams
- Department of Biology, Berry College, Mount Berry, GA, United States
| |
Collapse
|
7
|
Johansson HKL, Taxvig C, Olsen GPM, Svingen T. Effects of the Hedgehog Signaling Inhibitor Itraconazole on Developing Rat Ovaries. Toxicol Sci 2021; 182:60-69. [PMID: 33905526 PMCID: PMC8285011 DOI: 10.1093/toxsci/kfab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Early ovary development is considered to be largely hormone independent; yet, there are associations between fetal exposure to endocrine disrupting chemicals and reproductive disorders in women. This can potentially be explained by perturbations to establishment of ovarian endocrine function rather than interference with an already established hormone system. In this study we explore if Hedgehog (HH) signaling, a central pathway for correct ovary development, can be disrupted by exposure to HH-disrupting chemicals, using the antifungal itraconazole as model compound. In the mouse Leydig cell line TM3, used as a proxy for ovarian theca cells, itraconazole exposure had a suppressing effect on genes downstream of HH signaling, such as Gli1. Exposing explanted rat ovaries (gestational day 22 or postnatal day 3) to 30 µM itraconazole for 72 h induced significant suppression of genes in the HH signaling pathway with altered Ihh, Gli1, Ptch1, and Smo expression similar to those previously observed in Ihh/Dhh knock-out mice. Exposing rat dams to 50 mg/kg bw/day in the perinatal period did not induce observable changes in the offspring's ovaries. Overall, our results suggest that HH signal disruptors may affect ovary development with potential long-term consequences for female reproductive health. However, potent HH inhibitors would likely cause severe teratogenic effects at doses lower than those causing ovarian dysgenesis, so the concern with respect to reproductive disorder is for the presence of HH disruptors at low concentration in combination with other ovary or endocrine disrupting compounds.
Collapse
Affiliation(s)
- Hanna Katarina Lilith Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Camilla Taxvig
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gustav Peder Mohr Olsen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Cripps SM, Mattiske DM, Pask AJ. Erectile Dysfunction in Men on the Rise: Is There a Link with Endocrine Disrupting Chemicals? Sex Dev 2021; 15:187-212. [PMID: 34134123 DOI: 10.1159/000516600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022] Open
Abstract
Erectile dysfunction (ED) is one of the most prevalent chronic conditions affecting men. ED can arise from disruptions during development, affecting the patterning of erectile tissues in the penis and/or disruptions in adulthood that impact sexual stimuli, neural pathways, molecular changes, and endocrine signalling that are required to drive erection. Sexual stimulation activates the parasympathetic system which causes nerve terminals in the penis to release nitric oxide (NO). As a result, the penile blood vessels dilate, allowing the penis to engorge with blood. This expansion subsequently compresses the veins surrounding the erectile tissue, restricting venous outflow. As a result, the blood pressure localised in the penis increases dramatically to produce a rigid erection, a process known as tumescence. The sympathetic pathway releases noradrenaline (NA) which causes detumescence: the reversion of the penis to the flaccid state. Androgen signalling is critical for erectile function through its role in penis development and in regulating the physiological processes driving erection in the adult. Interestingly, estrogen signalling is also implicated in penis development and potentially in processes which regulate erectile function during adulthood. Given that endocrine signalling has a prominent role in erectile function, it is likely that exposure to endocrine disrupting chemicals (EDCs) is a risk factor for ED, although this is an under-researched field. Thus, our review provides a detailed description of the underlying biology of erectile function with a focus on the role of endocrine signalling, exploring the potential link between EDCs and ED based on animal and human studies.
Collapse
Affiliation(s)
- Samuel M Cripps
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|