1
|
Jia Y, Jia R, Dai Z, Zhou J, Ruan J, Chng W, Cai Z, Zhang X. Stress granules in cancer: Adaptive dynamics and therapeutic implications. iScience 2024; 27:110359. [PMID: 39100690 PMCID: PMC11295550 DOI: 10.1016/j.isci.2024.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Stress granules (SGs), membrane-less cellular organelles formed via liquid-liquid phase separation, are central to how cells adapt to various stress conditions, including endoplasmic reticulum stress, nutrient scarcity, and hypoxia. Recent studies have underscored a significant link between SGs and the process of tumorigenesis, highlighting that proteins, associated components, and signaling pathways that facilitate SG formation are often upregulated in cancer. SGs play a key role in enhancing tumor cell proliferation, invasion, and migration, while also inhibiting apoptosis, facilitating immune evasion, and driving metabolic reprogramming through multiple mechanisms. Furthermore, SGs have been identified as crucial elements in the development of resistance against chemotherapy, immunotherapy, and radiotherapy across a variety of cancer types. This review delves into the complex role of SGs in cancer development and resistance, bringing together the latest progress in the field and exploring new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruyin Jia
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhengfeng Dai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - WeeJoo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
2
|
Chu JC, Tseng HJ, Lee SB, Hsu KC, Hsin LW, Liang RH, Lin TE, Gao NC, Chen LC, Lu WH, Wang AHJ, Huang WJ. Synthesis and biological evaluation of C-4 substituted phenoxazine-bearing hydroxamic acids with potent class II histone deacetylase inhibitory activities. J Enzyme Inhib Med Chem 2023; 38:2212326. [PMID: 37190931 DOI: 10.1080/14756366.2023.2212326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Class II histone deacetylases (HDACs) are considered as potential targets to treat Alzheimer's disease (AD). Previously, C-3 substituted phenothiazine-containing compounds with class II HDAC-inhibiting activities was found to promote neurite outgrowth. This study replaced phenothiazine moiety with phenoxazine that contains many C-3 and C-4 substituents. Some resulting compounds bearing the C-4 substituent on a phenoxazine ring displayed potent class II HDAC inhibitory activities. Structure-activity relationship (SAR) of these compounds that inhibited HDAC isoenzymes was disclosed. Molecular modelling analysis demonstrates that the potent activities of C-4 substituted compounds probably arise from π-π stacked interactions between these compounds and class IIa HDAC enzymes. One of these, compound 7d exhibited the most potent class II HDAC inhibition (IC50= 3-870 nM). Notably, it protected neuron cells from H2O2-induced neuron damage at sub-μM concentrations, but with no significant cytotoxicity. These findings show that compound 7d is a lead compound for further development of anti-neurodegenerative agents.
Collapse
Affiliation(s)
- Jung-Chun Chu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ju Tseng
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Sung-Bau Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Ling-Wei Hsin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ru-Hao Liang
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Nain-Chu Gao
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Liang-Chieh Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States
| | - Wan-Hsun Lu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Andrew H-J Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Watson PR, Stollmaier JG, Christianson DW. Crystal structure of histone deacetylase 6 complexed with (R)-lipoic acid, an essential cofactor in central carbon metabolism. J Biol Chem 2023; 299:105228. [PMID: 37703993 PMCID: PMC10622836 DOI: 10.1016/j.jbc.2023.105228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
The enzyme cofactor (R)-lipoic acid plays a critical role in central carbon metabolism due to its catalytic function in the generation of acetyl-CoA, which links glycolysis with the tricarboxylic acid cycle. This cofactor is also essential for the generation of succinyl CoA within the tricarboxylic acid cycle. However, the biological functions of (R)-lipoic acid extend beyond metabolism owing to its facile redox chemistry. Most recently, the reduced form of (R)-lipoic acid, (R)-dihydrolipoic acid, has been shown to inhibit histone deacetylases (HDACs) with selectivity for the inhibition of HDAC6. Here, we report the 2.4 Å-resolution X-ray crystal structure of the complex between (R)-dihydrolipoic acid and HDAC6 catalytic domain 2 from Danio rerio, and we report a dissociation constant (KD) of 350 nM for this complex as determined by isothermal titration calorimetry. The crystal structure illuminates key affinity determinants in the enzyme active site, including thiolate-Zn2+ coordination and S-π interactions in the F583-F643 aromatic crevice. This study provides the first visualization of the connection between HDAC function and the biological response to oxidative stress: the dithiol moiety of (R)-dihydrolipoic acid can serve as a redox-regulated pharmacophore capable of simultaneously targeting the catalytic Zn2+ ion and the aromatic crevice in the active site of HDAC6.
Collapse
Affiliation(s)
- Paris R Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Juana Goulart Stollmaier
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
| |
Collapse
|
4
|
Watson PR, Stollmaier JG, Christianson DW. Crystal Structure of Histone Deacetylase 6 Complexed with ( R )-Lipoic Acid, an Essential Cofactor in Central Carbon Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552419. [PMID: 37609266 PMCID: PMC10441330 DOI: 10.1101/2023.08.08.552419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The enzyme cofactor ( R )-lipoic acid plays a critical role in central carbon metabolism due to its catalytic function in the generation of acetyl-CoA, which links glycolysis with the tricarboxylic acid cycle. This cofactor is also essential for the generation of succinyl CoA within the tricarboxylic acid cycle. However, the biological functions of ( R )-lipoic acid extend beyond metabolism owing to its facile redox chemistry. Most recently, the reduced form of ( R )-lipoic acid, ( R )-dihydrolipoic acid, has been shown to inhibit histone deacetylases (HDACs) with selectivity for the inhibition of HDAC6. Here, we report the 2.4 Å-resolution X-ray crystal structure of the HDAC6-( R )-dihydrolipoic acid complex, and we report a dissociation constant (K D ) of 350 nM for this complex as determined by isothermal titration calorimetry. The crystal structure illuminates key affinity determinants in the enzyme active site, including thiolate-Zn 2+ coordination and S-π interactions in the F583-F643 aromatic crevice. This study provides the first visualization of the connection between HDAC function and the biological response to oxidative stress: the dithiol moiety of ( R )-dihydrolipoic acid can serve as a redox-regulated pharmacophore capable of simultaneously targeting the catalytic Zn 2+ ion and the aromatic crevice in the active site of HDAC6.
Collapse
Affiliation(s)
- Paris R. Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | - Juana Goulart Stollmaier
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
5
|
Hsu KC, Chu JC, Tseng HJ, Liu CI, Wang HC, Lin TE, Lee HS, Hsin LW, Wang AHJ, Lin CH, Huang WJ. Synthesis and biological evaluation of phenothiazine derivative-containing hydroxamic acids as potent class II histone deacetylase inhibitors. Eur J Med Chem 2021; 219:113419. [PMID: 33845233 DOI: 10.1016/j.ejmech.2021.113419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/22/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) has been associated with dysregulation of histone deacetylases (HDACs). Previously, acridine-based HDAC inhibitors have shown potential in ameliorating HDAC activity and enhancing neurite outgrowth. In this study, the acridine ring was modified using various phenothiazine derivatives. Several resulting compounds exhibited potent enzyme-inhibiting activity towards class II HDACs when compared to the clinically approved HDAC inhibitor SAHA. Compound 4f demonstrated the highest class II HDAC inhibition (IC50 = 4.6-600 nM), as well as promotion of neurite outgrowth. Importantly, compound 4f displayed no cytotoxicity against neuron cells. Compound 4f was further evaluated for cellular effects. Altogether, these findings show a potential strategy in HDAC inhibition for treatment of the neurological disease.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Chu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ju Tseng
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-I Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hao-Ching Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Master Program in Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hong-Sheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ling-Wei Hsin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Andrew H-J Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|